что такое хеширование файлов

Что такое хэш и хэш-функция: практическое применение, обзор популярных алгоритмов

Цифровые технологии широко применяют хеширование, несмотря на то, что изобретению более 50 лет: аутентификация, осуществление проверки целостности информации, защита файлов, включая, в некоторых случаях, определение вредоносного программного обеспечения и многие другие функции. Например, множество задач в области информационных технологий требовательны к объему поступающих данных. Согласитесь, проще и быстрее сравнить 2 файла весом 1 Кб, чем такое же количество документов, но, к примеру, по 10 Гб каждый. Именно по этой причине алгоритмы, способные оперировать лаконичными значениями, весьма востребованы в современном мире цифровых технологий. Хеширование – как раз решает эту проблему. Разберемся подробно, что такое хэш и хэш-функция.

Что за «зверь» такой это хеширование?

Чтобы в головах читателей не образовался «винегрет», начнем со значения терминологий применительно к цифровым технологиям:

Исходя из пояснений, делаем вывод: хеширование – процесс сжатия входящего потока информации любого объема (хоть все труды Уильяма Шекспира) до короткой «аннотации» в виде набора случайных символов и цифр фиксированной длины.

Коллизии

Коллизии хэш-функций подразумевает появление общего хэш-кода на два различных массива информации. Неприятная ситуация возникает по причине сравнительно небольшого количества символов в хэш. Другими совами, чем меньше знаков использует конечная формула, тем больше вероятность итерации (повтора) одного и того же хэш-кода на разные наборы данных. Чтобы снизить риск появления коллизии, применяют двойное хеширование строк, образующее открытый и закрытый ключ – то есть, используется 2 протокола, как, например, в Bitcoin. Специалисты, вообще, рекомендуют обойтись без хеширования при осуществлении каких-либо ответственных проектов, если, конечно же, это возможно. Если без криптографической хэш-функции не обойтись, протокол обязательно нужно протестировать на совместимость с ключами.

Важно! Коллизии будут существовать всегда. Алгоритм хеширования, перерабатывающий различный по объему поток информации в фиксированный по количеству символов хэш-код, в любом случае будет выдавать дубли, так как множеству наборов данных противостоит одна и та же строчка заданной длины. Риск повторений можно только снизить.

Технические параметры

Основополагающие характеристики протоколов хеширования выглядят следующим образом:

Здесь стоит так же отметить важные свойства алгоритмов: способность «свертывать» любой массив данных, производить хэш конкретной длины, распределять равномерно на выходе значения функции. Необходимо заметить, любые изменения во входящем сообщении (другая буква, цифра, знак препинания, даже лишний пробел) внесут коррективы в итоговый хэш-код. Он просто будет другим – такой же длины, но с иными символами.

Требования

К эффективной во всех отношениях хэш-функции выдвигаются следующие требования:

Данные требования выполнимы исключительно тогда, когда протокол базируется на сложных математических уравнениях.

Практическое применение

Процедура хеширования относительно своего функционала может быть нескольких типов:

Разберемся детальней в сфере применения протоколов хеширования.

Скачивание файлов из Всемирной Паутины

Этим занимается фактически каждый активный пользователь Всемогущей Сети, сталкиваясь с хэш-функциями сам того не осознавая, так как мало кто обращает внимание при скачивании того или иного файла на череду непонятных цифр и латинских букв. Однако именно они и есть хэш или контрольные суммы – перед вереницей символов стоит название используемой категории протокола хеширования. В общем-то, для обывателей абсолютно ненужная «инфа», а продвинутый юзер может выяснить, скачал ли он точную копию файла или произошла ошибка. Для этой процедуры необходимо установить на собственный ПК специальную утилиту (программу), которая способна вычислить хэш по представленному протоколу.

Важно! Установив на ПК пакет утилит, прогоняем через него файлы. Затем сравниваем полученный результат. Совпадение символов говорит о правильной копии – соответствующей оригиналу. Обнаруженные различия подразумевают повторное скачивание файла.

Алгоритм и электронно-цифровая подпись (ЭЦП)

Цифровая резолюция (подпись) – кодирование документа с использованием ключей закрытого и открытого типа. Другими словами, первоначальный документ сопровождается сообщением, закодированным закрытым ключом. Проверка подлинности электронной подписи осуществляется с применением открытого ключа. При обстоятельствах, когда в ходе сравнения хэш двух информационных наборов идентичен, документ, который получил адресат, признается оригинальным, а подпись истинной. В сухом остатке получаем высокую скорость обработки потока наборов данных, эффективную защиту виртуального факсимиле, так как подпись обеспечивается криптографической стойкостью. В качестве бонуса – хэш подразумевает использование ЭЦП под разнообразными типами информации, а не только текстовыми файлами.

Ревизия паролей

Очередная область применения хэш-функции, с которой сталкивается практически каждый пользователь. Подавляющее большинство серверов хранит пользовательские пароли в значении хэш. Что вполне обоснованно, так как, сберегая пароли пользователей в обычной текстовой форме, можно забыть о безопасности конфиденциальных, секретных данных. Столкнувшись с хэш-кодом, хакер даже время терять не будет, потому что, обратить вспять произвольный набор символов практически невозможно. Конечно же, если это не пароль в виде «12345» или что-то на подобии него. Доступ осуществляется путем сравнения хэш-кода вводимого юзером с тем, который хранится на сервере ресурса. Ревизию кодов может осуществлять простейшая хэш-функция.

Важно! В реальности программисты применяют многоярусный комплексный криптографический протокол с добавлением, в большинстве случаев, дополнительной меры безопасности – защищенного канала связи, чтобы виртуальные мошенники не перехватили пользовательский код до того, как он пройдет проверку на сервере.

Как появилось понятие хэш?

Сделаем небольшую паузу, чтобы интеллект окончательно не поплыл от потока сложных для простых пользователей терминов и информации. Расскажем об истории появления термина «хэш». А для простоты понимания выложим «инфу» в табличной форме.

Дата (год) Хронология событий
1953 Известный математик и программист Дональд Кнут авторитетно считает, что именно в этот промежуток времени сотрудник IBM Ханс Питер Лун впервые предложил идею хеширования.
1956 Арнольд Думи явил миру такой принцип хеширования, какой знают его подавляющее большинство современных программистов. Именно эта «светлая голова» предложила считать хэш-кодом остаток деления на любое простое число. Кроме этого, исследователь видел идеальное хеширование инструментов для позитивной реализации «Проблемы словаря».
1957 Статья Уэсли Питерсона, опубликованная в «Journal of Research and Development», впервые серьезно затронула поиск информации в больших файлах, определив открытую адресацию и ухудшение производительности при ликвидации.
1963 Опубликован труд Вернера Бухгольца, где было представлено доскональное исследование хэш-функции.
1967 В труде «Принципы цифровых вычислительных систем» авторства Херберта Хеллермана впервые упомянута современная модель хеширования.
1968 Внушительный обзор Роберта Морриса, опубликованный в «Communications of the ACM», считается точкой отсчета появления в научном мире понятия хеширования и термина «хэш».

Интересно! Еще в 1956 году советский программист Андрей Ершов называл процесс хеширования расстановкой, а коллизии хэш-функций – конфликтом. К сожалению, ни один из этих терминов не прижился.

Стандарты хеширования: популярные варианты

Итак, от экскурса в историю перейдем вновь к серьезной теме. Опять-таки, ради простоты восприятия предлагаем краткое описание популярных стандартов хеширования в табличном виде. Так проще оценить информацию и провести сравнение.

На этом, пожалуй, закончим экскурсию в мир сложных, но весьма полезных и востребованных протоколов хеширования.

Источник

Что такое хеш файла и как его узнать

Каждый файл имеет определенные идентифицирующие свойства: имя, расширение, размер и др. Но ни одно из этих свойств не является уникальным и не позволяет однозначно идентифицировать каждый файл. Например, может существовать несколько однотипных файлов одинакового размера и с одинаковыми именами, отличающихся при этом по содержанию.

Что такое хеш файла

Файлы с одинаковыми хешами всегда являются точными копиями друг друга, даже если у них разные имена и (или) расширения.

Изменение содержания файла автоматически влечет за собой изменение его хеша.

Существует несколько общепринятых алгоритмов (стандартов) расчета хеша. Наиболее часто используются алгоритмы:

Хеши, рассчитанные по разным алгоритмам, будут отличаться. Например, так выглядят разные хеши одного и того же файла:

Практическая ценность хеш-суммы файлов

Хеш часто используется для проверки подлинности или целостности важных файлов.

• большинство разработчиков программного обеспечения рядом со ссылками на загрузку программ размещают на своих сайтах хеши этих файлов. После загрузки программы пользователь может сравнить хеш полученного файла с размещенным на сайте и таким образом проверить, не «потерялась» ли часть информации во время загрузки;

• хеши файлов, размещенные на официальном сайте их разработчиков, позволяют убедиться в подлинности таких файлов в случае их загрузки из альтернативных источников;

• проверка хешей важных системных файлов дает возможность системным администраторам выявлять и устранять изменения, внесенные в компьютер злоумышленниками или вредоносными программами.

Хеш файла имеет много вариантов применения. Выше указана лишь маленькая их часть.

Как узнать хеш файла

Для расчета хеша используют специальные программы. Одной из самых популярных среди них является бесплатная программа Hash Tab. Она добавляет соответствующие функции в меню свойств файлов.

Порядок использования:

• установить программу Hash Tab;

• щелкнуть правой кнопкой мышки по файлу и в появившемся контекстном меню выбрать пункт «Свойства»;

• в открывшемся окне перейти на вкладку «Хеш-суммы файлов» и подождать, пока компьютер рассчитает и отобразит хеши файла.

На этой же вкладке есть ссылка с названием «Настройки», нажав на которую можно выбрать алгоритмы, по которым программа Hash Tab будет рассчитывать хеши.

Операционная система Windows умеет автоматически определять тип каждого файла и открывать его при помощи подходящей программы. Пользователю достаточно лишь дважды щелкнуть по файлу левой кнопкой мышки.

Происходит это потому, что у каждого файла есть расширение, а в настойках операционной системы компьютера заложена некая схема взаимосвязей, в которой каждому расширению файла соответствует определенная программа, которую компьютер использует чтобы открывать такие файлы. Эта схема взаимосвязей типов расширений файлов и программ называется ассоциациями файлов.

Программа, при помощи которой компьютер автоматически открывает файлы определенного типа, называется программой по умолчанию.

Если пользователя не устаивает программа, используемая по умолчанию для какого-то типа файлов, ассоциации файлов можно изменить.

Пользователь компьютера постоянно имеет дело с файлами и папками. Из изложенной ниже статьи начинающие читатели узнают о том, что такое файл, что такое папка, в чем между ними состоит разница и как их на практике различать.

Тем не менее, операционная система Windows позволяет осуществлять групповое переименование настолько же просто, как и в случае с одним файлом. Но почему-то об этой возможности знают далеко не все пользователи.

DjVu — это технология компактного хранения электронных копий документов, созданных с помощью сканера, когда распознавание текста нецелесообразно.

В виде файлов формата djvu хранится огромное количество отсканированных книг, журналов, документов, научных трудов и т.д. Файлы получаются компактными за счет незначительной потери качества изображений. Тем не менее, в них сохраняются фотографии, элементы художественного оформления и другие графические нюансы.

Не смотря на распространённость файлов djvu, у многих начинающих пользователей компьютера возникают трудности с их открытием.

Часто возникают ситуации, когда нужно большой файл разделить на несколько частей с возможностью их дальнейшего соединения.

Например, это может решить проблему с отправкой видео по электронной почте, если используемый почтовый сервис не позволяет пересылать файлы, превышающие определенный размер. Файл можно разрезать на части и переслать его в нескольких письмах.

Примеров, когда разделение файла решает проблему, можно придумать много. Но какой бы ни была ситуация, задачу с «разрезанием» можно решить при помощи обычного архиватора.

Для них это краткое руководство.


ПОКАЗАТЬ ЕЩЕ

Источник

Чудеса хеширования

Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, защиту файлов и даже обнаружение зловредного ПО. Как они работают и где применяются?

Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, проверку целостности данных, защиту файлов и даже обнаружение зловредного ПО. Существует масса алгоритмов хеширования, отличающихся криптостойкостью, сложностью, разрядностью и другими свойствами. Считается, что идея хеширования принадлежит сотруднику IBM, появилась около 50 лет назад и с тех пор не претерпела принципиальных изменений. Зато в наши дни хеширование обрело массу новых свойств и используется в очень многих областях информационных технологий.

Что такое хеш?

Если коротко, то криптографическая хеш-функция, чаще называемая просто хешем, — это математический алгоритм, преобразовывающий произвольный массив данных в состоящую из букв и цифр строку фиксированной длины. Причем при условии использования того же типа хеша длина эта будет оставаться неизменной, вне зависимости от объема вводных данных. Криптостойкой хеш-функция может быть только в том случае, если выполняются главные требования: стойкость к восстановлению хешируемых данных и стойкость к коллизиям, то есть образованию из двух разных массивов данных двух одинаковых значений хеша. Интересно, что под данные требования формально не подпадает ни один из существующих алгоритмов, поскольку нахождение обратного хешу значения — вопрос лишь вычислительных мощностей. По факту же в случае с некоторыми особо продвинутыми алгоритмами этот процесс может занимать чудовищно много времени.

Как работает хеш?

Например, мое имя — Brian — после преобразования хеш-функцией SHA-1 (одной из самых распространенных наряду с MD5 и SHA-2) при помощи онлайн-генератора будет выглядеть так: 75c450c3f963befb912ee79f0b63e563652780f0. Как вам скажет, наверное, любой другой Брайан, данное имя нередко пишут с ошибкой, что в итоге превращает его в слово brain (мозг). Это настолько частая опечатка, что однажды я даже получил настоящие водительские права, на которых вместо моего имени красовалось Brain Donohue. Впрочем, это уже другая история. Так вот, если снова воспользоваться алгоритмом SHA-1, то слово Brain трансформируется в строку 97fb724268c2de1e6432d3816239463a6aaf8450. Как видите, результаты значительно отличаются друг от друга, даже несмотря на то, что разница между моим именем и названием органа центральной нервной системы заключается лишь в последовательности написания двух гласных. Более того, если я преобразую тем же алгоритмом собственное имя, но написанное уже со строчной буквы, то результат все равно не будет иметь ничего общего с двумя предыдущими: 760e7dab2836853c63805033e514668301fa9c47.

Впрочем, кое-что общее у них все же есть: каждая строка имеет длину ровно 40 символов. Казалось бы, ничего удивительного, ведь все введенные мною слова также имели одинаковую длину — 5 букв. Однако если вы захешируете весь предыдущий абзац целиком, то все равно получите последовательность, состоящую ровно из 40 символов: c5e7346089419bb4ab47aaa61ef3755d122826e2. То есть 1128 символов, включая пробелы, были ужаты до строки той же длины, что и пятибуквенное слово. То же самое произойдет даже с полным собранием сочинений Уильяма Шекспира: на выходе вы получите строку из 40 букв и цифр. При всем этом не может существовать двух разных массивов данных, которые преобразовывались бы в одинаковый хеш.

Вот как это выглядит, если изобразить все вышесказанное в виде схемы:

Для чего используется хеш?

Отличный вопрос. Однако ответ не так прост, поскольку криптохеши используются для огромного количества вещей.

Для нас с вами, простых пользователей, наиболее распространенная область применения хеширования — хранение паролей. К примеру, если вы забыли пароль к какому-либо онлайн-сервису, скорее всего, придется воспользоваться функцией восстановления пароля. В этом случае вы, впрочем, не получите свой старый пароль, поскольку онлайн-сервис на самом деле не хранит пользовательские пароли в виде обычного текста. Вместо этого он хранит их в виде хеш-значений. То есть даже сам сервис не может знать, как в действительности выглядит ваш пароль. Исключение составляют только те случаи, когда пароль очень прост и его хеш-значение широко известно в кругах взломщиков. Таким образом, если вы, воспользовавшись функцией восстановления, вдруг получили старый пароль в открытом виде, то можете быть уверены: используемый вами сервис не хеширует пользовательские пароли, что очень плохо.

Вы даже можете провести простой эксперимент: попробуйте при помощи специального сайта произвести преобразование какого-нибудь простого пароля вроде «123456» или «password» из их хеш-значений (созданных алгоритмом MD5) обратно в текст. Вероятность того, что в базе хешей найдутся данные о введенных вами простых паролях, очень высока. В моем случае хеши слов «brain» (8b373710bcf876edd91f281e50ed58ab) и «Brian» (4d236810821e8e83a025f2a83ea31820) успешно распознались, а вот хеш предыдущего абзаца — нет. Отличный пример, как раз для тех, кто все еще использует простые пароли.

Еще один пример, покруче. Не так давно по тематическим сайтам прокатилась новость о том, что популярный облачный сервис Dropbox заблокировал одного из своих пользователей за распространение контента, защищенного авторскими правами. Герой истории тут же написал об этом в твиттере, запустив волну негодования среди пользователей сервиса, ринувшихся обвинять Dropbox в том, что он якобы позволяет себе просматривать содержимое клиентских аккаунтов, хотя не имеет права этого делать.

Впрочем, необходимости в этом все равно не было. Дело в том, что владелец защищенного копирайтом контента имел на руках хеш-коды определенных аудио- и видеофайлов, запрещенных к распространению, и занес их в список блокируемых хешей. Когда пользователь предпринял попытку незаконно распространить некий контент, автоматические сканеры Dropbox засекли файлы, чьи хеши оказались в пресловутом списке, и заблокировали возможность их распространения.

Где еще можно использовать хеш-функции помимо систем хранения паролей и защиты медиафайлов? На самом деле задач, где используется хеширование, гораздо больше, чем я знаю и тем более могу описать в одной статье. Однако есть одна особенная область применения хешей, особо близкая нам как сотрудникам «Лаборатории Касперского»: хеширование широко используется для детектирования зловредных программ защитным ПО, в том числе и тем, что выпускается нашей компанией.

Как при помощи хеша ловить вирусы?

Примерно так же, как звукозаписывающие лейблы и кинопрокатные компании защищают свой контент, сообщество создает списки зловредов (многие из них доступны публично), а точнее, списки их хешей. Причем это может быть хеш не всего зловреда целиком, а лишь какого-либо его специфического и хорошо узнаваемого компонента. С одной стороны, это позволяет пользователю, обнаружившему подозрительный файл, тут же внести его хеш-код в одну из подобных открытых баз данных и проверить, не является ли файл вредоносным. С другой — то же самое может сделать и антивирусная программа, чей «движок» использует данный метод детектирования наряду с другими, более сложными.

Криптографические хеш-функции также могут использоваться для защиты от фальсификации передаваемой информации. Иными словами, вы можете удостовериться в том, что файл по пути куда-либо не претерпел никаких изменений, сравнив его хеши, снятые непосредственно до отправки и сразу после получения. Если данные были изменены даже всего на 1 байт, хеш-коды будут отличаться, как мы уже убедились в самом начале статьи. Недостаток такого подхода лишь в том, что криптографическое хеширование требует больше вычислительных мощностей или времени на вычисление, чем алгоритмы с отсутствием криптостойкости. Зато они в разы надежнее.

Кстати, в повседневной жизни мы, сами того не подозревая, иногда пользуемся простейшими хешами. Например, представьте, что вы совершаете переезд и упаковали все вещи по коробкам и ящикам. Погрузив их в грузовик, вы фиксируете количество багажных мест (то есть, по сути, количество коробок) и запоминаете это значение. По окончании выгрузки на новом месте, вместо того чтобы проверять наличие каждой коробки по списку, достаточно будет просто пересчитать их и сравнить получившееся значение с тем, что вы запомнили раньше. Если значения совпали, значит, ни одна коробка не потерялась.

Источник

Для чего нужны хеши файла MD5, SHA-1 и SHA-256 – как проверять хеш

Иногда Вы можете встретить упоминание MD5, SHA-1 или SHA-256 хешей, отображаемых вместе с вашими, но, на самом деле, не знаете, что они означают. Эти, казалось бы, случайные строки текста позволяют Вам проверить, что файлы, которые вы загрузили, не были повреждены или подделаны.

Как используют хеши для проверки данных

Хэши являются результатом работы криптографических алгоритмов, и представляют собой строку символов. Часто эти строки имеют фиксированную длину, независимо от размера входных данных.

Взгляните на диаграмму, и вы увидите, что хеш «Fox» и «The red fox jumps over the blue dog» имеет одинаковую длину. Теперь сравните второй пример на графике с третьим, четвертым и пятым. Вы увидите, что, несмотря на незначительные изменения во входных данных, хеши сильно отличаются друг от друга. Даже если кто-то изменит очень маленький фрагмент входных данных, хэш будет резко меняться.

MD5, SHA-1 и SHA-256 – это разные алгоритмы хеш-функции. Создатели программного обеспечения часто указывают хеш для загружаемых файлов.

Таким образом, Вы можете загрузить файл, а затем сравнить опубликованный с рассчитанным для загруженного файла, чтобы подтвердить, что Вы получили оригинальный файл, и что он не был поврежден во время процесса загрузки или подделан злонамеренно.

Как мы видели выше, даже небольшое изменение в файле резко изменит хэш.

Они также могут быть полезны, если файл получен из неофициального источника, и вы хотите проверить, что это «законно». Допустим, у Вас есть Linux.iso-файл, который вы откуда-то получили, и вы хотите убедиться, что он оригинальный. Вы можете посмотреть хеш этого ISO-файла в интернете на веб-сайте дистрибутивов Linux. Затем рассчитать хеш-функцию на вашем компьютере и убедиться, что результат соответствует хеш-значению, которое вы ожидаете от него. Это подтверждает, что у вас тот же файл, который предлагается для загрузки на официальном веб-сайте дистрибутива Linux.

Сравнение хеша в любой операционной системе

Имея это в виду, давайте посмотрим, как проверить хеш файла, который вы загрузили, и сравнить его с тем, который должен быть. Вот методы для Windows, macOS и Linux. Хеши всегда будут идентичны, если вы используете одну и ту же функцию хеширования в одном файле. Не имеет значения, какую операционную систему Вы используете.

Хэш файла в Windows

Этот процесс возможен без какого-либо стороннего программного обеспечения на Windows, благодаря PowerShell.

Выполните следующую команду, заменив «C:\path\to\file.iso» путём к любому файлу, для которого вы хотите просмотреть хеш:

Для создания хеша файла потребуется некоторое время, в зависимости от размера файла, используемого алгоритма и скорости диска, на котором находится файл.

По умолчанию команда покажет хеш SHA-256 для файла. Однако, можно указать алгоритм хеширования, который необходимо использовать, если вам нужен хэш MD5, SHA-1 или другой тип.

Выполните одну из следующих команд, чтобы задать другой алгоритм хэширования:

Сравните результат хеш-функций с ожидаемым результатом. Если это то же значение, файл не был поврежден, подделан или иным образом изменен от исходного.

Хэш файла на macOS

macOS содержит команды для просмотра различных типов хэшей. Для доступа к ним запустите окно терминала. Вы найдете его в FinderПриложенияУтилитыТерминал.

Команда md5 показывает MD5-хеш файла:

Команда shasum показывает хеша SHA-1 по умолчанию. Это означает, что следующие команды идентичны:

Чтобы отобразить хеш файла SHA-256, выполните следующую команду:

Хэш файла в Linux

В Linux обратитесь к терминалу и выполните одну из следующих команд для просмотра хеша файла, в зависимости от типа хеша, который вы хотите посмотреть:

Хэши с криптографической подписью

Хотя хэши могут помочь вам подтвердить, что файл не был подделан, здесь остаётся возможность для атаки. Злоумышленник может получить контроль веб-сайтом с дистрибутивом Linux и изменить хеш-коды, которые отображаются на нём, или злоумышленник может изменять веб-страницу во время передачи информации, если доступ происходит по протоколу http, вместо зашифрованного протокола https.

Вот почему современные дистрибутивы Linux часто предоставляют больше, чем хеши, перечисленные на веб-страницах. Они криптографически подписывают эти хеши, чтобы помочь защититься от злоумышленников, которые могут попытаться изменить хеши. Вы можете проверить криптографическую подпись, чтобы убедиться, что хеш действительно относится к дистрибутиву Linux. Проверка криптографической подписи хеша – более сложный процесс, выходящий за рамки представленной статьи.

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • что такое хеширование простыми словами
  • что такое хеширование информации
  • что такое хеширование данных
  • что такое хеш функции artery
  • что такое хеш фонд

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии