Химическое соединение
Хими́ческое соедине́ние — сложное вещество, состоящее из химически связанных атомов двух или нескольких элементов (гетероядерные молекулы). Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (азот, кислород, иод, бром, хлор, фтор, предположительно астат). [1] Инертные (благородные) газы и атомарный водород нельзя считать химическими соединениями.
Содержание
История
Качественный и количественный состав
Состав химического соединения записывается в виде химических формул, а строение часто изображается структурными формулами. Систематическое название (номенклатура ИЮПАК) также указывает состав соединения.
В подавляющем большинстве случаев химические соединения подчиняются закону постоянства состава и закону кратных отношений. Однако известны довольно многочисленные соединения переменного состава (бертоллиды), например:
Для установления качественного и количественного состава химического соединения, используются различные методы химического анализа (например, колориметрия, хроматография). Эти методы являются предметом изучения аналитической химии.
Отличия соединений и смесей
Физические и химические свойства соединений отличаются от свойств смеси простых веществ — это один из главных критериев отличия соединения от смесей простых или сложных веществ, так как свойства смеси обычно тесным образом связаны со свойствами компонентов. Другим критерием отличия является то, что смесь обычно может быть разделена на составляющие нехимическими процессами, такими, как просеивание, фильтрация, выпаривание, использование магнитов, тогда как компоненты химического соединения могут быть разделены только при помощи химической реакции. И наоборот, смеси могут быть созданы без использования химической реакции, а соединения — нет.
Некоторые смеси так тесно связаны, что некоторые их свойства сходны со свойствами химических соединений, и их легко спутать. Наиболее частым примером таких смесей являются сплавы. Сплавы изготавливаются при помощи физических процессов, обычно — путём расплавления и смешивания компонентов с последующим остыванием. Другим примером смесей, не являющихся сплавами, являются интерметаллиды.
Химические реакции
Химические соединения получают в результате химических реакций. Сложные вещества могут разлагаться с образованием нескольких других веществ. Образование химических соединений сопровождается выделением (экзотермическая реакция) или поглощением (эндотермическая реакция) энергии. Физические и химические свойства химических соединений отличаются от свойств веществ, из которых они получены. Химические соединения разделяются на неорганические и органические. Известно более 100 тыс. неорганических и более 3 млн органических соединений. Каждое химическое соединение, которое описано в литературе, имеет уникальный идентификатор — CAS-номер.
Классы химических соединений
Некоторые виды cложных неорганических соединений:
Основные понятия и законы химии
Химия – это наука, которая сопутствует нам, где бы мы не находились: дома, в офисе, на природе или в городе. Трудно переоценить ее вклад в нашу жизнь, необходимость понимания и знания основных понятий и законов химии.
Итак, какие же основные понятия и законы включает химия? Сначала дадим определение науке: Химия — наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении.
Основные понятия химии
Основными в химии являются такие понятия, как атом, молекула, элемент, вещество, аллотропия и др.
У истока основных понятий химии стоит атомно-молекулярное учение, которое дает определение молекулы и атома:
Молекула
Это наименьшая частица определенного вещества, которая обладает его химическими свойствами. Состав и химическое строение молекулы определяют ее химические свойства. Все вещества состоят из молекул, а молекулы из атомов.
Атом
Это наименьшая частица химического элемента, входящая в состав молекул простых и сложных веществ, это электронейтральная частица, которая состоит из положительно заряженного ядра атома и отрицательно заряженных электронов, вращающихся вокруг ядра.
Молекулы и атомы находятся в постоянном движении.
Химический элемент
В настоящее время известно 118 элементов, 89 из которых найдены в природе, остальные получены искусственно (см. Интересные факты о химических элементах). Что же такое Химический элемент? Это такой вид атомов, который имеет определенный заряд ядра и строение электронных оболочек.
Теперь рассмотрим строение атомного ядра и следующее основное понятие химии.
Атомное ядро
Атомное ядро состоит из протонов (Z) и нейтронов (N), имеет положительный заряд, равный по величине количеству протонов (или электронов в нейтральном атоме) и совпадает с порядковым номером элемента в периодической таблице. Суммарная масса протонов и нейтронов атомного ядра называется массовым числом A = Z + N. Существуют химические элементы (изотопы), имеющие одинаковый заряд ядер, но при этом различные массовые числами, что достигается за счет разного числа нейтронов в ядре.
Вещество
Некая совокупность атомов и молекул, их ассоциатов и агрегатов, которые могут находиться в любом из трех агрегатных состояний, образуют вещество.
Простые вещества состоят из атомов одного вида, а сложные вещества (химические соединения) состоят из атомов разного вида и образуются при химическом взаимодействии атомов разных химических элементов.
Аллотропия
Встречается явление, при котором один химический элемент может образовывать нескольких простых веществ, различных по свойствам и строению. Это явление называется Аллотропией. Аллотропные модификации характерны, например, для кислорода (O2 и O3), фосфора (белый, красный, черный фосфор), углерода (алмаз, графит), серы (моноклинная, ромбическая, пластическая), олова (белое, серое, ромбическое олово).
Химическая формула
В 1814 г Й. Берцелиус предложил использовать химическую формулу — запись состава веществ с помощью химических знаков и индексов.
Химическое вещество характеризуется атомной массой, а молекулы — молекулярной массой.
Относительная атомная масса (Ar)
Это отношение средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1 /12 массы атома 12 C.
Относительная молекулярная масса (Mr)
Это величина, показывающая, во сколько раз масса молекулы данного вещества больше 1 /12 массы атома углерода 12 C. Относительная молекулярная масса вещества равна сумме относительных атомных масс всех элементов, составляющих химическое соединение, с учетом индексов.
Моль вещества (n)
Это количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится их в 12 г изотопа углерода 12 C.
Молярная масса (M) показывает массу 1 моля вещества и равна отношению массы вещества к соответствующему количеству вещества.
Химический эквивалент
Для более удобного сравнения способности различных элементов к соединению введено понятие химического эквивалента. Это одно из важнейших понятий химии, дадим ему определение:
Химическим эквивалентом вещества (Э) называется такое его количество, которое соединяется с 1 молем атомов водорода или замещает то же количество атомов водорода в химических реакциях.
Масса 1 эквивалента вещества называется эквивалентной массой (mэкв). Масса одного моля эквивалента элемента — это молярная масса эквивалента MЭ(X).
Молярную массу эквивалента химического элемента, простых и сложных веществ (Mэкв(X)) рассчитывают по формуле:
где M(X) – молярная масса; вал – суммарная валентность.
Например, молярная масса эквивалента алюминия составляет Mэкв(Са) = 40/2 = 20 г/моль.
Молярные массы эквивалента кислорода и водорода постоянны и составляют:
Эквивалентную массу соединения можно определить по его химической формуле, например,
М экв(оксида) = М(оксида)/(число атомов кислорода ∙ 2);
М экв(основания) = М(основания)/число гидроксильных групп;
М экв(кислоты) = М(кислоты)/число протонов;
М экв(соли) = М(соли)/(число атомов металла ∙ валентность металла).
Пример, определим эквивалент (Э) и эквивалентную массу Мэкв (Х) фосфора, серы и брома в соединениях PHз, Н2S и HBr.
В PHз 1 моль атомов водорода соединяется с 1/3 моль фосфора, поэтому эквивалент фосфора равен Э(N) = 1/3 моль
В Н2S 1 моль атомов водорода соединяется с 1/2 моль серы, поэтому эквивалент серы равен Э(S) = 1/2 моль
В HBr 1 моль атомов водорода соединяется с 1 моль брома, поэтому эквивалент брома равен Э(Br) = 1 моль.
Найдем эквивалентные массы:
Мэкв (Р) = 31/3 = 10,33 г/моль;
Мэкв (S) = 32/2 = 16 г/моль;
Мэкв (Br) = 80/1 = 80 г/моль.
Аналогично можно дать определение понятию эквивалентный объем.
Эквивалентный объем – это тот объем, который при данных условиях занимает 1 эквивалент вещества. Так как эквивалент водорода равен 1 моль, а в 22,4 л Н2 содержатся 2 эквивалента водорода; тогда эквивалентный объем водорода равен 22,4/2=11,2 л/моль, для О2 эквивалентный объем равен 5,6 л/моль.
Определить эквивалент вещества можно также по его соединению с другим веществом, эквивалент которого известен.
Определить молярную массу эквивалента (эквивалентную массу) можно исходя из закона эквивалентов, который рассмотрен немного ниже.
Основные законы химии
Нижеперечисленные законы принято считать основными законами химии.
Закон эквивалентов
По закону эквивалентов химические элементы соединяются между собой или замещают друг друга в количествах, пропорциональных их молярным массам эквивалентов:
где m1 и m2 — массы реагирующих или образующихся веществ, М экв1 и М экв2 — эквивалентные массы этих веществ.
Примеры расчета молярной массы эквивалента представлен в задачах 5-7 раздела Задачи к разделу Основные понятия и законы химии
Закон сохранения вещества
В 1756 г. М.В. Ломоносов, после длительных испытаний, пришел к важному открытию: вес всех веществ, вступающих в химическую реакцию, равен весу всех продуктов реакции.
Этот закон отражается в законе сохранения массы, который заключается в следующем: масса веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции. Вещества не исчезают и не возникают из ничего, а происходит химическое превращение. Закон является основой при составлении химических реакций и количественных расчетов в химии.
Закон постоянства состава
В 1808 Ж. Пруст сформулировал закон, который гласит, что независимо от способа получения все индивидуальные вещества имеют постоянный количественный и качественный состав.
Закон кратных отношений
В 1803 г Д. Дальтон открыл закон, заключающийся в том, что если два химических элемента образуют несколько соединений, то весовые доли одного и того же элемента в этих соединениях, приходящиеся на одну и ту же весовую долю второго элемента, относятся между собой как небольшие целые числа.
Закон объемных отношений
В 1808 г Гей-Люссак сформулировал закон, который гласил:
«Объемы газов, вступающих в химические реакции, и объемы газов, являющихся продуктами реакции, соотносятся между собой как небольшие целые числа».
Газовые законы
Важную роль в развитии химической науки сыграли газовые законы (справедливы только для газов).
В 1811 г. Авогадро ди Кваренья (Закон Авогадро) доказал, что- в равных объемах любых газов при постоянных условиях (температуре и давлении) содержится одинаковое число молекул. В одинаковых условиях одно и то же число молекул занимают равные объемы, а 1 моль любого при T=273°К и p=101,3 кПа газа занимает объем 22,4 л, который называется молярным объемом газа (Vm).
Независимо друг от друг трое ученых вывели следующие законы:
закон Бойля-Мариотта при Т= const: P1V1 = P2V2;
закон Шарля при V = const:P1 / T1 = P2 / T2
При объединении этих трех законов получаем:
Если условия отличаются от нормальных, то применяют уравнение Клапейрона – Менделеева:
p — давление газа, V — его объем, n — количество молей газа, R — универсальная газовая постоянная (8,314 Дж/(моль*К).
Количество газа при нормальных условиях рассчитывают по формуле:
Плотность газов при заданных давлении и температуре прямо пропорциональна их молярной массе:
Относительная плотность газов показывает, во сколько раз один газ тяжелее другого. Плотность газа В по газу А определяется следующим образом:
Это основные законы химии. В заключение приведем Закон парциальных давлений (закон Дальтона). Парциальное давление в смеси равно тому давлению газа, которым он обладал бы, если бы занимал такой же объем, какой занимает вся смесь при той же температуре. При условии, что в газовой смеси нет химического взаимодействия, общее давление газовой смеси равно сумме парциальных давлений газов, входящих в эту смесь:
Состав газовых смесей может выражаться количеством вещества (n), массовыми (ωn), объемными (φn) и молярными (χ) долями:
Что такое химическое соединение в химии определение
АВОГАДРО ЗАКОН – см. ЗАКОН АВОГАДРО.
Водородная связь приблизительно в 20 раз менее прочная, чем ковалентная. При её возникновении число связей, образуемых атомом Н, превышает его формальную валентность.
ГРАММ-МОЛЬ. См. МОЛЯРНАЯ МАССА.
ЗАКОН АВОГАДРО. Равные объемы любых газов (при одинаковых температуре и давлении) содержат равное число молекул. 1 МОЛЬ любого газа при нормальных условиях занимает объем 22,4 л.
ЗАКОН СОХРАНЕНИЯ МАССЫ. Масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.
КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА. Кристаллическая структура характеризуется правильным (регулярным) расположением частиц в строго определенных точках пространства кристалла. При мысленном соединении этих точек линиями получаются пространственный каркас, который называют кристаллической решеткой. Точки, в которых размещены частицы, называются узлами кристаллической решетки. В узлах могут находиться ионы, атомы или молекулы. Кристаллическая решетка состоит из совершенно одинаковых элементарных ячеек (см. «элементарная ячейка»).
НОРМАЛЬНЫМИ УСЛОВИЯМИ (н.у.) называют температуру 0 о С (273 K) и давление 1 атм (760 мм ртутного столба или 101 325 Па). Не путать со СТАНДАРТНЫМИ УСЛОВИЯМИ!
ПЕРИОДИЧЕСКИЙ ЗАКОН Д.И. МЕНДЕЛЕЕВА. Свойства элементов периодически изменяются в соответствии с зарядом ядер их атомов.
ПРАВИЛО ГУНДА. При заселении орбиталей с одинаковой энергией (например, пяти d-орбиталей) электроны в первую очередь расселяются поодиночке на вакантных («пустых») орбиталях, после чего начинается заселение орбиталей вторыми электронами.
ПРАВИЛО ОКТЕТА. Атомы элементов стремятся к наиболее устойчивой электронной конфигурации. Самая распространенная устойчивая электронная конфигурация – с завершенной внешней электронной оболочкой из 8 электронов (с октетом электронов).
ПРИНЦИП ПАУЛИ. ( ЗАПРЕТ ПАУЛИ ). Никакие два электрона в одном атоме не могут характеризоваться одинаковым набором всех четырех квантовых чисел n, l, m и s.
РАСТВОРИТЕЛЬ. Из двух или нескольких компонентов раствора растворителем называется тот, который взят в большем количестве и имеет то же агрегатное состояние, что и у раствора в целом.
РАСТВОРЫ. Простое определение: однородные молекулярные смеси из двух или более веществ. Более полное определение: растворами называют физико-химические однородные смеси переменного состава, состоящие из двух или нескольких веществ и продуктов их взаимодействия.
СТЕПЕНЬ ОКИСЛЕНИЯ. При образовании химических связей между атомами электроны частично передаются от менее электроноакцепторных атомов к более электроноакцепторным атомам. Количество отданных или принятых атомом электронов называется степенью окисления атома в молекуле. При связывании разных атомов степень окисления равна заряду, который приобрел бы атом в этом соединении, если бы оно могло состоять из одних ионов. Описывает состояние атома в молекуле.
ТИПЫ ХИМИЧЕСКИХ РЕАКЦИЙ:
Химические соединения
Содержание:
Химические соединения – сложные вещества, молекулы которых состоят из двух или более атомов различных элементов, объединенных определенной химической связью.
На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.
Химические соединения
В соответствии с формулировкой периодического закона мы рассмотрели некоторые свойства свободных атомов и простых веществ. На примере аллотропии мы убедились в том, что не только электронное строение нейтрального атома, но также состав и пространственное строение простого вещества определяют его свойства. Аналогичным будет наш подход к рассмотрению сложного вещества.
Если простых веществ известно в настоящее время около 400, то сложных — во много раз больше: около 100 тысяч неорганических, несколько миллионов органических и несколько десятков тысяч элементоорганических.
Они различаются по агрегатному состоянию, по распространению в природе, по способности давать новые образования из того же числа атомов тех же элементов (новые модификации — по аналогии с аллотропией для простых веществ).
Рассмотрим несколько вопросов, важных для понимания природы химического соединения.
Смесь и химическое соединение
Представим себе, что мы взяли мелко раздробленные железо и серу тщательно их перемешали при обычных условиях. Это будет смесь двух простых веществ. Для сравнения возьмем соединение железа и серы — сернистое железо FeS. Мы можем убедиться в том, что свойства атомов железа и серы в соединении отличаются от свойств простых веществ.
Так, железо притягивается магнитом, независимо от того, взяли мы чистое железо или смесь последнего с серой. Соединение (сернистое железо) магнитом не притягивается.
Сера хорошо растворяется в сероуглероде. Соединение FeS в сероуглероде не растворяется.
При действии на смесь соляной кислоты происходит выделение водорода. Взаимодействие сернистого железа с кислотой приводит к образованию сероводорода.
А между тем смесь можно приготовить так, чтобы она по внешнему виду не отличалась от соединения. Однако это лишь внешнее, кажущееся сходство. Внутренние же их отличия велики. Иными словами: смесь только внешне может казаться однородной, химические воздействия показывают ее неоднородность. Химическое соединение — однородно.
Изучение и сопоставление физических и химических свойств смеси и соединения приводит нас к выводу о качественном отличии свойств атомов элементов в смеси (простые вещества) и химическом соединении.
Другая характерная черта химического соединения — наличие связей между атомами разных элементов. В зависимости от составляющих соединения атомов эти связи могут быть ионными, ковалентными и металлическими.
Одна из важнейших характеристик соединения — его форма, его состав.
Простейшая и истинная формула химического соединения
Простейшую формулу можно определить в результате химического анализа, истинную — только имея данные об истинном молекулярном весе соединения. Так, по результатам анализа можно установить простейшую формулу СН, но какому соединению (например, С2Н2 или С6Н6) она отвечает, сказать нельзя, если неизвестен молекулярный вес соединения. Эти данные о молекулярном весе, строго говоря, можно получить в том случае, если вещество газообразно или может быть переведено в газообразное состояние без разложения или какого-либо другого изменения состава, иными словами, для тех соединений, к которым приложимо понятие молекулы.
Рассмотрим два примера:
Пример 1. При окислении кислородом воздуха 34 г газообразного вещества образовалось 28 г азота и 54 г воды. Плотность этого вещества по водороду равна 8,5. Определить его истинную формулу.
Решение. Вначале необходимо установить количественный и качественный состав вещества.
В 34 г соединения находится 28г азота. Подсчитаем, сколько граммов водорода содержится в 34 г соединения.
В одной грамм-молекуле воды «содержится» два грамм-атома водорода. Так как грамм-молекулярный вес воды равен 18 е, то
Следовательно, соединение состоит только из азота и водорода, так как сумма их весовых количеств составляет
Находим формулу соединения:
Простейшая формула соединения: NH3.
Однако это еще не окончательный ответ. В условии задачи указана плотность вещества водороду (8,5). Значит, молекулярный вес вещества: М = 2D = 2 * 8,5 = 17. Молекулярный вес NH3 также 17. Установленная формула оказывается истинной.
Такая проверка оказывается необходимой потому, что часто в химических соединениях истинное отношение чисел грамм-атомов элементов не совпадает в точности с простейшими отношениями, а оказывается кратным им. Особенно часто это встречается в органической химии. Однако и в неорганической химии встречаются подобные примеры. Кроме только что найденного соединения с водородом состава NH3 (аммиак), азот образует другое N2H4 (гидразин), где простейшее отношение N : Н = 1 : 2. Другой пример: Н2О2 (перекись водорода), простейшая формула НО.
Пример 2. Число атомов кислорода в соединении вдвое больше числа атомов азота. Плотность соединения по водороду 46. Найти истинную формулу соединения.
Решение. Простейшая формула N02. Молекулярный вес этого соединения M NO2 = 14+32=46. Найдем истинный молекулярный вес:
т.е. он вдвое превосходит тот, который получается из простейшей формулы. Следовательно формула соединения N2O4.
Для большинства твердых неорганических соединений (с ионной или сильно полярной связью) можно определить простейшие формулы.
О постоянстве состава веществ
В XIX в. при изучении состава различных веществ выяснилось, что весовые отношения между элементами в сложных веществах всегда постоянны, причем эти отношения являются такими же, как и в одной молекуле этого вещества. Точно так же постоянны и отношение чисел грамм-атомов в одной грамм-молекуле. Более того, числа грамм-атомов в грамм-молекуле относятся друг к другу, как простые целые числа (Дж. Дальтон).
В начале XIX в. французский ученый Пруст установил закон постоянства состава: каждое вещество имеет определенный состав независимо от способа получения.
Несколько ранее другой французский ученый Бертолле утверждал обратное: состав вещества зависит от способа получения. Бертолле установил это, изучая составы сложных солевых систем.
В тот период закон Пруста был подтвержден изучением состава большого числа соединений (окислов, галогенидов, сульфидов металлов), состоящих из атомов двух элементов.
Однако, как впоследствии выяснилось, закон постоянства состава оказался верным лишь в том случае, когда речь идет о веществах, имеющих молекулярное строение (соединения в газообразном состоянии и соединения с молекулярной структурой).
Более совершенная экспериментальная техника позволяет зарегистрировать сейчас отклонения от стехиометрического состава даже у ряда «испытанных» окислов, сульфидов, галогенидов и т. п. Все это еще раз указывает на то, что внешние условия в определенной степени (различной для разных соединений) влияют на состав соединения.
Вот почему приходится говорить об ограниченности действия закона постоянства состава.
Надо сказать, что такой взгляд на химическое соединение, сложившийся в конце XIX и начале XX вв., удалось экспериментальна подтвердить с помощью рентгеноструктурного анализа. Некоторые общие положения были выработаны раньше, главным образом, трудами Д. И. Менделеева и Н. С. Курнакова.
Несмотря на отклонения от стехиометрического состава, наблюдающиеся у многих соединений, мы в дальнейшем не будем принимать их во внимание, следуя закону постоянства состава.
Химические связи в соединениях
Характер химических связей в соединениях зависит от положения элементов в периодической системе и, в первую очередь, от заполнения внешних уровней. Так, хлориды элементов III периода имеют ковалентные связи и лишь в хлориде натрия эта связь имеет типично ионный характер.
Степень смещения электронной пары в связи элемент — хлор можно изобразить следующей схемой:
Иногда характер химической связи изображают следующим образом:
Физические свойства соединений зависят не только от характера одиночной связи (в нашем примере: элемент—хлор), но и от формы соединения. Так, меняется структура веществ (поваренная соль — кристалическое соединение; хлор при обычных условиях — газо-образное вещество, состоящее из двухатомных молекул). Нередко по температурам плавления хлоридов можно составить представление о типе связи. Считают, что ионные соединения плавятся при температурах выше 600° С.
Иное изменение характера химической связи наблюдается в соединениях натрия с элементами III периода: от металлической связи (у натрия) через ковалентную (Na3P, Na2S) к ионной (NaCl).
Химические свойства соединений также находятся в зависимости от типа химической связи. Иллюстрацией этого положения могут служить реакции соединений элементов III периода с водой.
До сих пор мы рассматривали химические связи в соединениях, состоящих из атомов двух элементов (бинарные соединения). Между тем известно, что существует большое число и более сложных соединений.
Каким же образом происходит возникновение новых связей? Оказывается, образование сложных соединений является результатом электростатического взаимодействия между исходными соединениями. Нередко существенную роль в возникновении такого взаимодействия играют электронные пары одного из атомов. Так, например, осуществляется образование солей аммония: нейтральная молекула аммиака присоединяет из кислот атом водорода, имеющий окислительное число +1:
В отличие от ковалентной связи, образующейся за счет обобщения двух электронов, принадлежавших разным атомам, эта новая связь образуется за счет предоставления одним из атомов пары электронов. От ковалентной она отличается только своим происхождением, так как в ионе аммония все четыре связи N—Н равноценны. Заметим, что образование новой связи произошло без изменения окислительного числа атома азота (N). Изучении соединений, содержащих ион NHJ, показывает, что этот ион выступает во многих случаях как целое (соли аммония). Более того, образование атомом водорода (окислительное число + 1) новой связи оказывает влияние на его прежнюю связь в соединении с «о-валентной связью (например, в
Если исходные вещества (NH3 и НСI) являются газообразными при обычных условиях, то хлористый аммоний, как и другие соли аммония, — кристаллическое вещество, имеющее сравнительно высокую температуру плавления.
Электростатические взаимодействия играют большую роль щ только в образованиях новых устойчивых соединений, но в ход различных химических процессов, например, идущих в растворах.
Таким образом, любой химический процесс так или иначе связан с изменением прежних химических связей и возникновением новых. Иногда, как мы это рассматривали уже раньше, реакция идет с изменением окислительных чисел элементов.
Классификация неорганических соединений
Изучение свойств кислородных соединений, проведенное в конце XVIII и первой половине XX в., позволило разработать классификацию кислородных соединений элементов: окислы, основания, кислоты, соли.
Более глубокое раскрытие взаимосвязи между этими классами удалось осуществить в результате открытия периодического закона, теории электролитической диссоциации, теории химической связи.
В этом параграфе мы напомним лишь самые элементарные сведения о классах кислородных соединений. Окислами называются соединения, которые состоят из атомов кислорода и какого-нибудь другого химического элемента. Они подразделяются на солеобразующие и несолеобразующие. К последним относятся: N2O, NO, SiO. Солеобразующие окислы разделяются на основные, кислотные и амфотерные. Это деление основано на способности, соединяясь друг с другом, образовать соли.
Некоторые основные окислы, соединяясь с водой, образуют основания:
Однако большинство основных окислов с водой не соединяется, при разложении соответствующих оснований получается основной окисел и вода:
Многие кислотные окислы, соединяясь с водой, образуют кислоты:
Некоторые кислотные окислы с водой не соединяются; их можно получить разложением кислоты:
Основные окислы, реагируя с кислотными окислами или кислотами образуют соли:
Кислотные окислы, реагируя с основными окислами или основаниями (точнее: щелочами, т. е. растворимыми в воде основаниями), образуют соли:
Основания и кислоты вступают в реакцию друг с другом с образованием солей
Некоторые вопросы образования солей будет рассмотрено далее на основе теории электролитической диссоциации.
Кроме окислов, существует еще одна группа соединений, которые состоят из атомов кислорода и атомов другого элемента. Это перекиси, которые надо рассматривать как производные (соли) перекиси водорода:
Если окислительное число кислорода в окислах равно — 2, то в перекисях его следует признать равным — 1.
Впервые отличие перекисей от окислов оказалось возможным показать на основе периодической системы элементов Д. И. Менделеева. По сравнению с высшими солеобразующими окислами, в перекисях число атомов кислорода, приходящееся на одно и то же число атомов элемента, больше: Na2O (окисел), Na2O2 (перекись),
Среди солеобразующих окислов выделяется также звено особых окислов: ( 
Процессы образования кислот (и солей), идущие с участием этих окислов, сопровождаются изменением окислительного числа элемента. Например:
в зависимости от условий реакции. Таким образом, если при растворении в воде ангидрида азотной кислоты образуется только азотная кислота
здесь происходит образование еще одного соединения азота. В реакции (3) окислительное число азота не меняется, в реакциях (1) и (2) — меняется:
К этим реакциям мы еще вернемся при изучении процессов окисления — восстановления.
Рассмотренная выше классификация кислородных соединений строилась на основе состава и свойств (способность к солеобразованию) этих соединений. Однако оказалось, что способность образовывать соли присуща не только кислородным соединениям. Наряду с рассмотренными выше кислородными кислотами, существуют кислоты бескислородные. Известно, что водные растворы таких водородных соединений, как: 
Кислотные функции соединения — как определила теория электролитической диссоциации — связаны со способностью диссоциировать (разлогаться) с образованием иона водорода.
Таким образом, принцип группировки различных неорганических Соединений по соответствующим классам основывается как на изучении состава, так и на изучении свойств и реакций, идущих с участием рассматриваемых соединений.
Следовательно, результат химического процесса существенно влияет на наши представления о исходных веществах, о принадлежности их к тому или иному классу.
Графическое изображение формул химических соединений
Наглядное изображение связей, существующих между атомами в химическом соединении, издавна привлекало внимание ученых.
Так в органической химии на основе теории строения, разработанной А М Бутлеровым, широко пользуются структурными формулами отличие от валовых формул, описывающих качественный и количественный состав соединения, структурные формулы позволяют наглядно представить, в какой последовательности соединены атомы в молекуле, какие части молекул остаются неизменными, где происходит разрыв химических связей и т. п. Совершенно очевидно, что к графическому изображению сложных соединений можно прибегнуть лишь после того, как определены окислительные числа элементов, изучены свойства соединений (функциональные группы) и определён класс соединения.
Для того чтобы пояснить сказанное, обратимся к конкретному примеру. Хорошо известно, что валовой формулой С2Н6О можно представить состав двух соединений: этилового спирта и диметилового эфира. Изучение свойств того и другого позволяет раскрыть различную последовательность связей (формулы строения):
Каждая чёрточка в этих структурных формулах отвечает ковалентной связи, образованной парой электронов (по одному электрону от каждого из связанных атомов).
Остановимся теперь на ряде примеров из области неорганической химии. С этой целью обратимся к рассмотрению кислот хлора — кислородных и бескислородной хлористоводородной (соляной) кислоты.
В молекуле соляной кислоты HCI всего одна связь, соединяющая H и CI парой электронов. При графическом изображении молекулы соляной кислоты, вместо указанной пары электронов, ставится черточка:
Кислородные кислоты хлора являются одноосновными:
В левом столбце мы изобразили формулы кислородных кислот хлора несколько необычно, а именно так, чтобы было удобно перейти от них к структурным формулам. Действительно, валовые формулы, написанные в правом столбце, не дают представления о последовательности связей атомов в молекуле. В каждой кислородной кислоте, из числа тех, которые изучаются в средней школе водород кислоты (т. е. водород, способный замещаться на металл связан с кислородом Н—О—, а кислород, в свою очередь, с cooтветствующим элементом, в данном случае, хлором:
Эта структурная формула составлена не только с учетом класса соединения (кислота), но и соответствует окислительным числам элементов, входящих в соединение (хлорноватистая кислота)
Аналогичным образом составляются структурные формулы остальных кислот хлора. Например:
Пример. Рассмотрим структурные формулы кислородных кислот серы и фосфора: H2SO4 и Н3РО4.
Решение. Последовательность составления этих формул может быть paзличной. Например, такая:
Графическое изображение формулы можно начинать и по-другому, например с выражения окислительного числа центрального атома:
а затем, размещая остальные атомы
При любой последовательности изображения связей важно, чтобы учитывалось не только окислительное число элементов, но и класс соединения.
Однако графический способ изображения формул химических соединений далеко не полностью передает пространственную структуру соединения. Это замечание распространяется, главным образом, на те соединения, при определении состава которых мы вынуждены ограничиться простейшей формулой (многие твёрдые вещества). Примеры такого рода соединений будут приведены далее)
Кроме того, как мы уже имели возможность убедиться на примере солей аммония, число связей между атомами не всегда совпадает с окислительным числом элементов.
Поэтому графическое изображение формул соединений имеет ограниченное применение. Наиболее целесообразно ими пользоваться при рассмотрении соединений с ковалентными связями, степень полярности которых невелика.
Услуги по химии:
Лекции по химии:
Лекции по неорганической химии:
Лекции по органической химии:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

































