Что такое полиморфизм в программировании

Полиморфизм для начинающих

Постановка задачи

Предположим, на сайте нужны три вида публикаций — новости, объявления и статьи. В чем-то они похожи — у всех них есть заголовок и текст, у новостей и объявлений есть дата. В чем-то они разные — у статей есть авторы, у новостей — источники, а у объявлений — дата, после которой оно становится не актуальным.

Самые простые варианты, которые приходят в голову — написать три отдельных класса и работать с ними. Или написать один класс, в которым будут все свойства, присущие всем трем типам публикаций, а задействоваться будут только нужные. Но ведь для разных типов аналогичные по логике методы должны работать по-разному. Делать несколько однотипных методов для разных типов (get_news, get_announcements, get_articles) — это уже совсем неграмотно. Тут нам и поможет полиморфизм.

Абстрактный класс

Грубо говоря, это класс-шаблон. Он реализует функциональность только на том уровне, на котором она известна на данный момент. Производные же классы ее дополняют. Но, пора перейти от теории к практике. Сразу оговорюсь, рассматривается примитивный пример с минимальной функциональностью. Все объяснения — в комментариях в коде.

// а этот метод должен напечатать публикацию, но мы не знаем, как именно это сделать, и потому объявляем его абстрактным
abstract public function do_print ();
>

Производные классы

Теперь можно перейти к созданию производных классов, которые и реализуют недостающую функциональность.

Теперь об использовании

Суть в том, что один и тот же код используется для обьектов разных классов.

Вот и все. Легким движением руки брюки превращаются в элегантные шорты :-).

Основная выгода полиморфизма — легкость, с которой можно создавать новые классы, «ведущие себя» аналогично родственным, что, в свою очередь, позволяет достигнуть расширяемости и модифицируемости. В статье показан всего лишь примитивный пример, но даже в нем видно, насколько использование абстракций может облегчить разработку. Мы можем работать с новостями точно так, как с объявлениями или статьями, при этом нам даже не обязательно знать, с чем именно мы работаем! В реальных, намного более сложных приложениях, эта выгода еще ощутимей.

Немного теории

Источник

ООП. Часть 4. Полиморфизм, перегрузка методов и операторов

C# позволяет использовать один метод для разных типов данных и даже переопределить логику операторов. Разбираемся в перегрузках.

Полиморфизм (от греч. poly — много и morphe — форма) — один из главных столпов объектно-ориентированного программирования. Его суть заключается в том, что один фрагмент кода может работать с разными типами данных.

В C# это реализуется с помощью перегрузок (overloading).

Все статьи про ООП

Пишет о программировании, в свободное время создает игры. Мечтает открыть свою студию и выпускать ламповые RPG.

Перегрузка методов

C# — строго типизированный язык. Это значит, что вы не можете поместить строку в переменную типа int — сначала нужно провести преобразование. Так же и в метод нельзя передать параметр типа float, если при объявлении метода был указан тип double.

Однако если вы экспериментировали с методом WriteLine() класса Console, то могли заметить, что в него можно передавать аргументы разных типов:

Кажется, что нарушена типизация, но компилятор не выдаёт ошибку. Вместо этого всё успешно выводится на экран:

Так происходит потому, что у метода WriteLine() есть перегрузки — методы с таким же названием, но принимающие другие аргументы:

Когда вы вызовете метод Sum(), компилятор по переданным аргументам узнает, какую из его перегрузок вы имели в виду — так же, как это происходит с методом WriteLine().

При этом стоит учитывать, что значение имеют только типы и количество передаваемых аргументов. Например, можно написать такие перегрузки:

У этих методов одинаковые параметры, но разный возвращаемый тип. Попытка скомпилировать такой код приведёт к ошибке — так же, как и создание перегрузки с такими же аргументами, но с другими названиями:

Перегрузка конструкторов

То же самое можно сделать и с конструкторами классов:

Альтернатива этому решению — указать значения для аргументов по умолчанию:

Несмотря на, то что здесь меньше кода, на мой взгляд, это может запутать. Потому что придётся каждый раз заполнять все значения, даже если нужен только один аргумент из конца списка. Перегрузка же позволяет определить и порядок параметров (если они разных типов).

Перегрузка операторов

Перегрузить можно даже операторы, то есть:

Так как использоваться этот оператор должен без объявления экземпляра класса (item1 + item2, а не item1 item1.+ item2), то указываются модификаторы public static.

Например, мы хотим улучшать предметы в играх. Во многих MMO 1 популярна механика, когда один предмет улучшается за счёт другого. Мы можем сделать это с помощью перегрузки оператора сложения:

Теперь при сложении двух объектов класса Item мы будем получать третий объект с улучшенными параметрами. Вот пример использования такого оператора:

В результате в консоль будет выведено следующее:

1) MMO (англ. Massively Multiplayer Online Game, MMO, MMOG)

Массовая многопользовательская онлайн-игра

Перегрузка операторов преобразования типов

Хотя типизация в C# строгая, типы можно преобразовывать. Например, мы можем конвертировать число типа float в число типа int:

С помощью перегрузки операторов преобразования типов мы можем прописать любую логику для конвертации объектов. Для наглядности создадим класс Hero:

В этом классе хранятся данные о персонаже. В MMO часто можно увидеть такой параметр, как мощь — это сумма всех характеристик героя или предмета. Например, её можно посчитать по следующей формуле:

Мощь = (сила + ловкость + интеллект) * уровень.

Мы можем использовать преобразование типов, чтобы автоматически переводить объект в его мощь. Для этого нужно использовать такую конструкцию.

Модификатор implicit говорит компилятору, что преобразование может быть неявным. То есть оно сработает, если написать так:

Explicit, наоборот, означает, что преобразование должно быть явным:

Вот как будет выглядеть перегрузка преобразования объекта класса Hero в int:

Вот как она будет использоваться:

Вывод в консоль будет следующим:

Проблемы читаемости

Несмотря на то, что перегрузки помогают быстро реализовать какой-нибудь функционал, они могут навредить читаемости. Например, не всегда можно сразу понять, зачем в коде складываются два объекта.

Или же непонятно, зачем конвертировать Hero в int. Ясность вносит название переменной (power), но этого недостаточно.

В большинстве случаев лучше использовать более простые решения. Например, можно создать для объекта свойство Power, которое возвращает сумму характеристик.

Вместо сложения объектов можно написать метод Enhance(), который будет принимать другой предмет и прибавлять его характеристики к текущему.

Такие перегрузки стоит использовать либо если вы работаете над кодом один, либо если есть подробная документация.

Домашнее задание

Создайте игру, в которой можно улучшать одни предметы с помощью других. При улучшении предмету добавляется опыт. Когда его станет достаточно, необходимо повысить уровень. Количество опыта должно зависеть от мощи.

Заключение

Полиморфизм — очень удобный инструмент. Однако в этой статье была затронута лишь его часть; чтобы начать работать со второй, нужно ознакомиться с принципами наследования и абстракции.

Вы можете изучить ООП гораздо глубже, записавшись на курс «Профессия C#-разработчик». Он раскрывает лучшие практики работы с C# в объектно-ориентированной парадигме программирования.

Источник

Java Challengers #3: Полиморфизм и наследование

Мы продолжаем перевод серии статей с задачками по Java. Прошлый пост про строки вызвал на удивление бурную дискуссию. Надеемся, что мимо этой статьи вы тоже не пройдете мимо. И да — мы приглашаем теперь на юбилейный десятый поток нашего курса «Разработчик Java».

Согласно легендарному Венкату Субраманиам (Venkat Subramaniam) полиморфизм является самым важным понятием в объектно — ориентированном программировании. Полиморфизм — или способность объекта выполнять специализированные действия на основе его типа — это то, что делает Java — код гибким. Шаблоны проектирования, такие как Команда (Command), Наблюдатель (Observer), Декоратор (Decorator), Стратегия (Strategy), и многие другие, созданные бандой четырех (Gang Of Four), все используют ту или иную форму полиморфизма. Освоение этой концепции значительно улучшит вашу способность продумывать программные решения.

Вы можете взять исходный код для этой статьи и поэксперементировать здесь: https://github.com/rafadelnero/javaworld-challengers

Интерфейсы и наследование в полиморфизме

В этой статье мы сфокусируемся на связи между полиморфизмом и наследованием. Главное иметь в виду, что полиморфизм требует наследования или реализации интерфейса. Вы можете увидеть это на примере ниже с Дюком ( Duke ) и Джагги ( Juggy ):

Вывод этого кода будет таким:

Перегрузка (overloading) метода — это полиморфизм? Многие программисты путают отношение полиморфизма с переопределением методов (overriding) и перегрузкой методов (overloading). Фактически, только переопределение метода — это истинный полиморфизм. Перегрузка использует то же имя метода, но разные параметры. Полиморфизм — это широкий термин, поэтому всегда будут дискуссии на эту тему.

Какова цель полиморфизма

Большим преимуществом и целью использования полиморфизма является уменьшение связанности клиентского класса с реализацией. Вместо того чтобы хардкодить, клиентский класс получает реализацию зависимости для выполнения необходимого действия. Таким образом, клиентский класс знает минимум для выполнения своих действий, что является примером слабого связывания.

Чтобы лучше понять цель полиморфизма, взгляните на SweetCreator :

Аннотация @Override обязывает программиста использовать такую же сигнатуру метода, которая должна быть переопределена. Если метод не переопределен, будет ошибка компиляции.

Ковариантные возвращаемые типы при переопределении метода

Можно изменить тип возвращаемого значения переопределенного метода если это ковариантный тип. Ковариантный тип в основном является подклассом возвращаемого значения.

Полиморфизм в базовых классах Java

Рассмотрим пример кода, использующий Java Collections API без полиморфизма:

Отвратительный код, не так ли? Представьте себе, что вам нужно его сопровождать! Теперь рассмотрим тот же пример с полиморфизмом:

Вызов конкретных методов для полиморфного метода

Можно вызвать конкретные методы при полиморфном вызове метода, это происходит за счет гибкости. Вот пример:

Техника, которую мы используем здесь — это приведение типов (casting) или сознательное изменение типа объекта во время выполнения.

Обратите внимание, что вызов определенного метода возможен только при приведении более общего типа к более специфичному типу. Хорошей аналогией было бы сказать явно компилятору: «Эй, я знаю, что я здесь делаю, поэтому я собираюсь привести объект к определенному типу и буду использовать этот метод.»

Ключевое слово instanceof

Ключевое слово super

Решите задачку по полиморфизму

Давайте проверим, что вы узнали о полиморфизме и наследовании.

В этой задачке Вам дается несколько методов от Matt Groening’s The Simpsons, от вавам требуется разгадать, какой будет вывод для каждого класса. Для начала внимательно проанализируйте следующий код:

Как вы думаете? Каким будет результат? Не используйте IDE, чтобы выяснить это! Цель в том, чтобы улучшить ваши навыки анализа кода, поэтому постарайтесь решить самостоятельно.

Выберите ваш ответ (правильный ответ вы сможете найти в конце статьи).

A)
I love Sax!
D’oh
Simpson!
D’oh

B)
Sax :)
Eat my shorts!
I love Sax!
D’oh
Knock Homer down

C)
Sax :)
D’oh
Simpson!
Knock Homer down

D)
I love Sax!
Eat my shorts!
Simpson!
D’oh
Knock Homer down

Что случилось? Понимание полиморфизма

Для следующего вызова метода:

вывод будет «I love Sax!». Это потому, что мы передаём строку в метод и у класса Lisa есть такой метод.

Для следующего вызова:

Теперь смотрите, это немного сложнее:

В этом случае на выходе будет «Simpson!».

Распространенные ошибки с полиморфизмом

Распространенная ошибка думать, что можно вызвать конкретный метод без использования приведения типа.

Другой ошибкой является неуверенность в том, какой метод будет вызван при полиморфном создании экземпляра класса. Помните, что вызываемый метод является методом созданного экземпляра.

Также помните, что переопределение метода не является перегрузкой метода.

Невозможно переопределить метод, если параметры отличаются. Можно изменить тип возвращаемого значения переопределенного метода, если возвращаемый тип является подклассом.

Что нужно помнить о полиморфизме

Созданный экземпляр определяет, какой метод будет вызван при использовании полиморфизма.

Аннотация @Override обязывает программиста использовать переопределенный метод; в противном случае возникнет ошибка компилятора.

Полиморфизм может использоваться с обычными классами, абстрактными классами и интерфейсами.

Большинство шаблонов проектирования зависят от той или иной формы полиморфизма.

Единственный способ вызвать нужный ваш метод в полиморфном подклассе — это использовать приведение типов.

Можно создать мощную структуру кода, используя полиморфизм.

Экспериментируйте. Через это, вы сможете овладеть этой мощной концепцией!

Ответ

Как всегда приветствую ваши комментарии и вопросы. И ждём у Виталия на открытом уроке.

Источник

ООП с примерами (часть 2)

Волею судьбы мне приходится читать спецкурс по паттернам проектирования в вузе. Спецкурс обязательный, поэтому, студенты попадают ко мне самые разные. Конечно, есть среди них и практикующие программисты. Но, к сожалению, большинство испытывают затруднения даже с пониманием основных терминов ООП.

Для этого я постарался на более-менее живых примерах объяснить базовые понятия ООП (класс, объект, интерфейс, абстракция, инкапсуляция, наследование и полиморфизм).

Первая часть посвящена классам, объектам и интерфейсам.
Вторая часть, представленная ниже, иллюстрирует инкапсуляцию, полиморфизм и наследование

Инкапсуляция

Представим на минутку, что мы оказались в конце позапрошлого века, когда Генри Форд ещё не придумал конвейер, а первые попытки создать автомобиль сталкивались с критикой властей по поводу того, что эти коптящие монстры загрязняют воздух и пугают лошадей. Представим, что для управления первым паровым автомобилем необходимо было знать, как устроен паровой котёл, постоянно подбрасывать уголь, следить за температурой, уровнем воды. При этом для поворота колёс использовать два рычага, каждый из которых поворачивает одно колесо в отдельности. Думаю, можно согласиться с тем, что вождение автомобиля того времени было весьма неудобным и трудным занятием.

Теперь вернёмся в сегодняшний день к современным чудесам автопрома с коробкой-автоматом. На самом деле, по сути, ничего не изменилось. Бензонасос всё так же поставляет бензин в двигатель, дифференциалы обеспечивают поворот колёс на различающиеся углы, коленвал превращает поступательное движение поршня во вращательное движение колёс. Прогресс в другом. Сейчас все эти действия скрыты от пользователя и позволяют ему крутить руль и нажимать на педаль газа, не задумываясь, что в это время происходит с инжектором, дроссельной заслонкой и распредвалом. Именно сокрытие внутренних процессов, происходящих в автомобиле, позволяет эффективно его использовать даже тем, кто не является профессионалом-автомехаником с двадцатилетним стажем. Это сокрытие в ООП носит название инкапсуляции.

Инкапсуляция – это свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе и скрыть детали
реализации от пользователя.

Инкапсуляция неразрывно связана с понятием интерфейса класса. По сути, всё то, что не входит в интерфейс, инкапсулируется в классе.

Абстракция

Представьте, что водитель едет в автомобиле по оживлённому участку движения. Понятно, что в этот момент он не будет задумываться о химическом составе краски автомобиля, особенностях взаимодействия шестерён в коробке передач или влияния формы кузова на скорость (разве что, автомобиль стоит в глухой пробке и водителю абсолютно нечем заняться). Однако, руль, педали, указатель поворота (ну и, возможно, пепельницу) он будет использовать регулярно.

Абстрагирование – это способ выделить набор значимых характеристик объекта, исключая из рассмотрения незначимые. Соответственно, абстракция – это набор всех таких характеристик.

Если бы для моделирования поведения автомобиля приходилось учитывать химический состав краски кузова и удельную теплоёмкость лампочки подсветки номеров, мы никогда бы не узнали, что такое NFS.

Полиморфизм

Любое обучение вождению не имело бы смысла, если бы человек, научившийся водить, скажем, ВАЗ 2106 не мог потом водить ВАЗ 2110 или BMW X3. С другой стороны, трудно представить человека, который смог бы нормально управлять автомобилем, в котором педаль газа находится левее педали тормоза, а вместо руля – джойстик.

Всё дело в том, что основные элементы управления автомобиля имеют одну и ту же конструкцию и принцип действия. Водитель точно знает, что для того, чтобы повернуть налево, он должен повернуть руль, независимо от того, есть там гидроусилитель или нет.
Если человеку надо доехать с работы до дома, то он сядет за руль автомобиля и будет выполнять одни и те же действия, независимо от того, какой именно тип автомобиля он использует. По сути, можно сказать, что все автомобили имеют один и тот же интерфейс, а водитель, абстрагируясь от сущности автомобиля, работает именно с этим интерфейсом. Если водителю предстоит ехать по немецкому автобану, он, вероятно выберет быстрый автомобиль с низкой посадкой, а если предстоит возвращаться из отдалённого маральника в Горном Алтае после дождя, скорее всего, будет выбран УАЗ с армейскими мостами. Но, независимо от того, каким образом будет реализовываться движение и внутреннее функционирование машины, интерфейс останется прежним.

Полиморфизм – это свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Например, если вы читаете данные из файла, то, очевидно, в классе, реализующем файловый поток, будет присутствовать метод похожий на следующий: byte[] readBytes( int n );
Предположим теперь, что вам необходимо считывать те же данные из сокета. В классе, реализующем сокет, также будет присутствовать метод readBytes. Достаточно заменить в вашей системе объект одного класса на объект другого класса, и результат будет достигнут.

При этом логика системы может быть реализована независимо от того, будут ли данные прочитаны из файла или получены по сети. Таким образом, мы абстрагируемся от конкретной специализации получения данных и работаем на уровне интерфейса. Единственное требование при этом – чтобы каждый используемый объект имел метод readBytes.

Наследование

Представим себя, на минуту, инженерами автомобильного завода. Нашей задачей является разработка современного автомобиля. У нас уже есть предыдущая модель, которая отлично зарекомендовала себя в течение многолетнего использования. Всё бы хорошо, но времена и технологии меняются, а наш современный завод должен стремиться повышать удобство и комфорт выпускаемой продукции и соответствовать современным стандартам.

Нам необходимо выпустить целый модельный ряд автомобилей: седан, универсал и малолитражный хэтч-бэк. Очевидно, что мы не собираемся проектировать новый автомобиль с нуля, а, взяв за основу предыдущее поколение, внесём ряд конструктивных изменений. Например, добавим гидроусилитель руля и уменьшим зазоры между крыльями и крышкой капота, поставим противотуманные фонари. Кроме того, в каждой модели будет изменена форма кузова.

Очевидно, что все три модификации будут иметь большинство свойств прежней модели (старый добрый двигатель 1970 года, непробиваемая ходовая часть, зарекомендовавшая себя отличным образом на отечественных дорогах, коробку передач и т.д.). При этом каждая из моделей будет реализовать некоторую новую функциональность или конструктивную особенность. В данном случае, мы имеем дело с наследованием.
Наследование – это свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым или родительским. Новый класс – потомком, наследником или производным классом.

Необходимо отметить, что производный класс полностью удовлетворяет спецификации родительского, однако может иметь дополнительную функциональность. С точки зрения интерфейсов, каждый производный класс полностью реализует интерфейс родительского класса. Обратное не верно.

Действительно, в нашем примере мы могли бы произвести с новыми автомобилями все те же действия, что и со старым: увеличить или уменьшить скорость, повернуть, включить сигнал поворота. Однако, дополнительно у нас бы появилась возможность, например, включить противотуманные фонари.

Отсутствие обратной совместимости означает, что мы не должны ожидать от старой модели корректной реакции на такие действия, как включения противотуманок (которых просто нет в данной модели).

Источник

Что такое полиморфизм в программировании

ООП – парадигма программирования, в которой основными концепциями являются понятия объектов и классов. В центре ООП находится понятие объекта. Объект — это сущность, которой можно посылать сообщения, и которая может на них реагировать, используя свои данные. Объект — это экземпляр класса. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией. Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности — для этого требуется наличие наследования. Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм; то есть возможность объектов с одинаковой спецификацией иметь различную реализацию. Первым языком программирования, в котором были предложены принципы объектной ориентированности, была Симула. В момент своего появления (в 1967 году), этот язык программирования предложил поистине революционные идеи: объекты, классы, виртуальные методы и др., однако это всё не было воспринято современниками как нечто грандиозное. Тем не менее, большинство концепций были развиты Аланом Кэйем и Дэном Ингаллсом в языке Smalltalk. Именно он стал первым широко распространённым объектно-ориентированным языком программирования. (C#, C++, Java, Ruby, PHP, Perl, Python). ООП дает возможность создавать расширяемые системы (extensible systems). Это одно из самых значительных достоинств ООП и именно оно отличает данный подход от традиционных методов программирования. Расширяемость (extensibility) означает, что существующую систему можно заставить работать с новыми компонентами, причем без внесения в нее каких-либо изменений. Компоненты могут быть добавлены на этапе выполнения. Smalltalk — объектно-ориентированный язык программирования с динамической типизацией, разработанный в Xerox PARC Аланом Кэйем, Дэном Ингаллсом, Тедом Кэглером, Адель Голдберг, и другими в 1970-х годах. Язык был представлен как Smalltalk-80. Smalltalk оказал большое влияние на развитие многих других языков, таких как: Objective-C, Actor, Java, Groovy и Ruby. Многие идеи 1980-х и 1990-х по написанию программ появились в сообществе Smalltalk. К ним можно отнести рефакторинг, шаблоны проектирования (применительно к ПО), карты «класс — обязанности — взаимодействие» и экстремальное программирование в целом. Си — язык программирования, разработанный в 1969—1973 годах сотрудниками Bell Labs Кеном Томпсоном и Деннисом Ритчи как развитие языка Би. Благодаря близости по скорости выполнения программ, написанных на Си, к языку ассемблера, этот язык получил широкое применение при создании системного программного обеспечения и прикладное программное обеспечение для решения широко круга задач. Язык программирования Си оказал существенное влияние на развитие индустрии программного обеспечения, а его синтаксис стал основой для таких языков программирования как C++, C# и Java.

Основные понятия ООП: абстракция, инкапсуляция, наследование, полиморфизм.

Абстракция – это придание объекту характеристик, которые чётко определяют его концептуальные границы, отличая от всех других объектов. Основная идея состоит в том, чтобы отделить способ использования составных объектов данных от деталей их реализации в виде более простых объектов, подобно тому, как функциональная абстракция разделяет способ использования функции и деталей её реализации в терминах более примитивных функций, таким образом, данные обрабатываются функцией высокого уровня с помощью вызова функций низкого уровня. (Пример: говорить о предметах, не упоминая материалы, из которых они сделаны). Абстракция позволяет задействовать концепцию, игнорируя ее некоторые детали и работая с разными деталями на разных уровнях. Имея дело с составным объектом, вы имеете дело с абстракцией. Если вы рассматриваете объект как «дом», а не как комбинацию стекла, древесины и гвоздей, вы прибегаете к абстракции. Если вы рассматриваете множество домов как «город», вы прибегаете к другой абстракции. Базовые классы представляют собой абстракции, позволяющие концентрироваться на общих атрибутах производных классов и игнорировать детали конкретных классов при работе с базовым классом. Удачный интерфейс класса — это абстракция, позволяющая сосредоточиться на интерфейсе, не беспокоясь о внутренних механизмах работы класса. Мы используем абстракции на каждом шагу. Если б, открывая или закрывая дверь, вы должны были иметь дело с отдельными волокнами древесины, молекулами лака и стали, вы вряд ли смогли бы войти в дом или выйти из него. Абстракция — один из главных способов борьбы со сложностью реального мира. Слой абстрагирования (или уровень абстракции) — это способ уйти от деталей реализации конкретного множества функций.

Инкапсуляция – скрытие методов и переменных от других методов или переменных или других частей программы. Сокрытие реализации целесообразно применять в следующих целях:

Когда абстракция нас покидает, на помощь приходит инкапсуляция. Абстракция говорит: «Вы можете рассмотреть объект с общей точки зрения». Инкапсуляция добавляет: «Более того, вы не можете рассмотреть объект с иной точки зрения». Продолжим нашу аналогию: инкапсуляция позволяет вам смотреть на дом, но не дает подойти достаточно близко, чтобы узнать, из чего сделана дверь. Инкапсуляция позволяет вам знать о существовании двери, о том, открыта она или заперта, но при этом вы не можете узнать, из чего она сделана (из дерева, стекловолокна, стали или другого материала), и уж никак не сможете рассмотреть отдельные волокна древесины.

(Абстрактный класс белым цветом)

Как имитировать множественное наследование?

Полиморфизм – возможность объектов с одинаковой спецификацией иметь различную реализацию (использование одного имени для решения двух или более схожих, но технически разных задач). Если функция описывает разные реализации (возможно, с различным поведением) для ограниченного набора явно заданных типов и их комбинаций, это называется ситуативным полиморфизмом (ad hoc polymorphism). Ситуативный полиморфизм поддерживается во многих языках посредством перегрузки функций и методов. Если же код написан отвлеченно от конкретного типа данных и потому может свободно использоваться с любыми новыми типами, имеет место параметрический полиморфизм. Некоторые языки совмещают различные формы полиморфизма, порой сложным образом, что формирует самобытную идеологию в них и влияет на применяемые методологии декомпозиции задач. Например, в Smalltalk любой класс способен принять сообщения любого типа, и либо обработать его самостоятельно (в том числе посредством интроспекции), либо ретранслировать другому классу — таким образом, несмотря на широкое использование перегрузки функций, формально любая операция является неограниченно полиморфной и может применяться к данным любого типа.

Другие понятия ООП

Конструктор

В объектно-ориентированном программировании конструктор класса (от англ. constructor, иногда сокращают ctor) — специальный блок инструкций, вызываемый при создании объекта. Конструктор схож с методом, но отличается от метода тем, что не имеет явным образом определённого типа возвращаемых данных, не наследуется, и обычно имеет различные правила для рассматриваемых модификаторов. Конструкторы часто выделяются наличием одинакового имени с именем класса, в котором объявляется. Их задача — инициализировать члены объекта и определить инвариант класса, сообщив в случае некорректности инварианта. Корректно написанный конструктор оставит объект в «правильном» состоянии. Неизменяемые объекты тоже должны быть проинициализированы конструктором. В большинстве языков конструктор может быть перегружен, что позволяет использовать несколько конструкторов в одном классе, причём каждый конструктор может иметь различные параметры.

Деструктор

Вызывается при уничтожении объекта. Он обычно используется для освобождения памяти.

Виртуальный метод

В объектно-ориентированном программировании метод (функция) класса, который может быть переопределён в классах-наследниках так, что конкретная реализация метода для вызова будет определяться во время исполнения. Таким образом, программисту не обязательно знать точный тип объекта для работы с ним через виртуальные методы: достаточно лишь знать, что объект принадлежит классу или наследнику класса, в котором метод объявлен. Виртуальные методы — один из важнейших приёмов реализации полиморфизма. Они позволяют создавать общий код, который может работать как с объектами базового класса, так и с объектами любого его класса-наследника. При этом базовый класс определяет способ работы с объектами и любые его наследники могут предоставлять конкретную реализацию этого способа. В некоторых языках программирования, например в Java, нет понятия виртуального метода, данное понятие следует применять лишь для языков, в которых методы родительского класса не могут быть переопределены по умолчанию, а только с помощью некоторых вспомогательных ключевых слов. В некоторых же (как, например, в Python), все методы — виртуальные. Базовый класс может и не предоставлять реализации виртуального метода, а только декларировать его существование. Такие методы без реализации называются «чистыми виртуальными» (перевод англ. pure virtual) или абстрактными. Класс, содержащий хотя бы один такой метод, тоже будет абстрактным. Объект такого класса создать нельзя (в некоторых языках допускается, но вызов абстрактного метода приведёт к ошибке). Наследники абстрактного класса должны предоставить реализацию для всех его абстрактных методов, иначе они, в свою очередь, будут абстрактными классами. Для каждого класса, имеющего хотя бы один виртуальный метод, создаётся таблица виртуальных методов. Каждый объект хранит указатель на таблицу своего класса. Для вызова виртуального метода используется такой механизм: из объекта берётся указатель на соответствующую таблицу виртуальных методов, а из неё, по фиксированному смещению, — указатель на реализацию метода, используемого для данного класса. При использовании множественного наследования ситуация несколько усложняется за счёт того, что таблица виртуальных методов становится нелинейной. Принцип единственной обязанности (Single responsibility principle) обозначает, что каждый объект должен иметь одну обязанность и эта обязанность должна быть полностью инкапсулирована в класс. Все его сервисы должны быть направлены исключительно на обеспечение этой обязанности.

В чем плюсы и минусы ООП?

Общие положения

Полиморфизм

Инкапсуляция

Наследование

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • что такое полиморфизм в программировании простыми словами
  • что такое полиморфизм в объектно ориентированном программировании
  • Что такое полетная программа
  • что такое поле в программировании
  • Что такое поколения языков программирования

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии