Для чего нужна математика в программировании

Математика для программиста

Нужна ли математика программисту?

Нужна. А, кроме неё, нужна сферическая геометрия, география, музыка и банковское дело. И я сейчас не шучу.

Дело в том, что программисты редко решают задачи для самих себя: мы работаем в банковских сервисах, сервисах бронирования отелей, картографических сервисах и прочих Яндекс.Почтах. Получается, что мы решаем задачи наших пользователей.

Для решения чисто программистских задач у нас есть алгоритмы и паттерны: если посмотреть на код интернет-магазина цветов и банковского сайта он будет очень похож. Будут использоваться одинаковые условия, одинаковые циклы и даже паттерн MVC будет один и тот же.

Важнее то, что стоит за этими вещами: понимание как работает система в целом. Если посмотреть на вещи с этой стороны, то станет понятно, что программист — это младший специалист в области, в которой работает сайт.

Ещё пять лет назад Артём Поликарпов доказал, что каждый фронтендер немного дизайнер. Нам нужно понимать как устроены шрифты: что такое гротеск, чем он отличается от антиквы, что такое интерлиньяж, кернинг, разрядка, капитель. Понимать, что такое сетки и что такое композиция. Кроме этого, разбираться в UX — мы должны знать что такое оптимистичный UI, где поставить прелоадер и зачем это всё нужно пользователю.

Но быть только дизайнером — мало. Дело в том, что пользователи взаимодействуют с нашими сайтами: в интернет-магазинах они вводят данные своих банковских карт, на картографических сервисах прокладывают маршруты и измеряют расстояния, на музыкальных сайтах они транспонируют тональность песен и настраивают гитару по тюнеру. И всё это должен кто-то запрограммировать. Получается, что у программиста должны быть специальные знания.

Например, правильность номера банковской карты определяется по алгоритму Луна — это теория кодирования.

Чтобы найти расстояние между двумя точками на карте, заданными широтой и долготой, нужно воспользоваться формулой дуги большого круга — это сферическая геометрия. Ещё этой формулой очень часто пользуются в морской навигации.

С картами, вообще, связано очень много интересного. Например, Яндекс.Карты используют эллиптическую проекцию Меркатора, а все остальные географические сервисы — сферическую, поэтому если вы захотите наложить слой Яндекс.Пробок на любую другую карту у вас не сойдутся улицы и вам нужно будет знать, как трансформировать одну проекцию в другую.

С кругозором понятно — изучайте всё, что хотите, потому что в любом случае это вам пригодится. Но есть ли какая-то общая область, которая нужна всем программистам? Да, такая область есть, она называется «дискретная математика». Наука, которая лежит в основе информатики.

Я не говорю, что нужно учить диксретку досконально. Для программиста важнее широта взглядов и понимание, где посмотреть, чем узкие знания в какой-то отдельной области. Но помнить несколько основных тем не помешает.

Во-первых, изучите булеву логику. Вы пишете условия каждый день и хорошо бы понимать, как они работают, например, для того, чтобы эффективно их упрощать.

Ещё одна хорошая тема из дискретки — это графы. Очень многие программистские задачи решаются с помощью графов. Даже скучный и привычный DOM — это дерево, частный случай графа. И здесь неплохо бы понимать хотя бы как по деревьям можно ходить.

Например, вы знаете, что querySelector использует поиск в глубину? Это значит, что когда он заходит на узел DOM-дерева, он пытается посмотреть сначала его дочерние узлы и только потом соседние. Это значит если вы будете искать с помощью querySelector первый элемент на странице, то необязательно это будет элемент верхнего уровня, найденный элемент может находиться на любой вложенности.

Ещё одна тема из дискретной математики — алгоритмы. Теория алгоритмов изучает что такое алгоритмы и оценку их эффективности. Представьте, у вас есть список людей, у которых вам нужно посчитать средний рост. Список задан в виде массива объектов.

Первое решение, которое может прийти в голову — это с помощью метода map собрать другой массив, массив ростов этих людей, а потом с помощью метода reduce посчитать их сумму и поделить на количество.

Но это решение будет неэффективным, потому что вы будете использовать два прохода по массиву, вместо одного. Вы могли бы сразу использовать reduce для того, чтобы сложить сразу все показатели по росту.

На деле оценка эффективности алгоритмов это немного более сложная тема, она учитывает и какой алгоритм вы используете и объём входных данных, но направление мысли вы поняли. Умение оценить эффективность алгоритмов поможет вам писать код, который будет хорошо работать или на старых телефонах и компьютерах или который не будет тормозить при работе со сложными алгоритмами, например, с большими визуализациями.

Итого: учите всё подряд, что попадётся вам под руку. Для начала изучите дискретку, потому что она будет вашим основным инструментом в работе, а потом сосредоточьтесь на задачах вашего бизнеса и вы откроете для себя очень много нового в бизнесе, математике, строительстве и медицине.

Источник

Математика для программиста

Вступление

Приветствую. Я занимаюсь программированием и 3D-дизайнером, а также относительно недавно приступил к изучению основ кибербезопасности. Сейчас в процессе учебы столкнулся с интересной ситуацией, когда необходимо применять сложные математические алгоритмы для решения разных задач. Кроме того, подумал, о том, что раньше я по-другому смотрел на математику и не любил её. Следовательно, моё мнение об этом предмете изменилось, и я решил, что это может пригодиться другим, кто решил идти в программирование. Статья будет больше теоретической, но если будет интересно, пример подтверждения на практике сделаю в будущих статьях.

Основная мысль

Один из самых частых вопросов, который задают новички, люди, далёкие от программирования, и один из самых больших стереотипов современности: нужна ли математика программисту? И ведь точно на этот вопрос никто не даст полного ответа. Это связанно с тем, что направлений в программировании очень много.

Современные языки программирования, которые и очень популярны одновременно, сейчас, способны решать многие задачи очень быстро, а их инструментарий специально сделан таким образом, чтобы не вызывать дискомфорта у разработчиков в процессе разработки.

Конечно, большинство современных разработчиков предпочитают уходить больше в Frontend, Backend и не создавать себе проблем с изучением языков никого уровня.

Программисты, которые работают в этих сферах и пишут на JavaScript, Python, PHP и т. д. зарабатывают хорошие деньги, работают в высокоуровневом программировании, знают несколько технологий и не выполняют сложных математических вычислений. В большинстве случаев. Всё это хорошо, особенно, когда люди знают, что хотят. И когда им задают вопрос, «Нужна ли математика» говорят, что нужна лишь базовая для такого рода работ, а вот для более сложных проектов и технологий стоит дополнительно изучать что-то и посложнее школьной программы.

И другое дело, когда такие же разработчики, которые работают только с высоким уровнем и программируют сайты, отвечаю на такой же вопрос. Говорят, что математика вообще не нужна. Максимум-это сложение, вычитание, деление и умножение. И что дальше сочетательного закона идти не стоит.

Вполне логично. Однако стоит подумать про одну важную деталь, которую почти никто никогда не озвучивает. Дело в том, что ведь все компьютеры и ЭВМ работают с помощью математики. И что у истоков всего программирования стоит математика.

Вся программная арифметика связана с числами. В компьютерах используется бинарный код (1 и 0). Именно на этом коде и работают системы, начиная от операционных и заканчивая нейронными сетями. Всё, что связанно с вычислениями, всегда взаимодействует и цифрами.

Вспомним, что все люди, которые создавали подобные вещи в вычислительных науках, всегда имели хорошие знания во всеми нелюбимом школьном предмете. А ведь современные компьютерные технологии никуда эту науку не убрали.

Все сложные низкоуровневые языки программирования базируются на математике, да и современные высокоуровневые тоже, ведь в них заложена основа из никого уровня. А ведь, чем выше уровень языка, тем тяжелее создать что-то сложное и большое.

Поэтому зачастую все стараются избежать изучения С/С++, Java и других подобных языков, а предпочитают уходить в веб-разработку, где процесс понимания направления и технологий более легкий, и платят не хуже.

Вывод

Задумайтесь, все сложные вещи пишутся на низких языках и включают математические знания. Конечно, нет необходимости учить весь курс вышмата, но если вы серьёзно захотите создать, например, свою ОС, написать крутой фреймворк, или уникальный искусственный интеллект, то без хороших математических знаний и соответствующих навыков в ЯП это будет сделать почти невозможно.

Отвечая на вопрос, «Нужна ли математика программисту? », я могу смело дать ответ: «Да». Каким бы ни был программист и что бы он ни делал, чем больше знаний в точных областях он будет знать, тем лучше для него, как специалиста.

Нельзя пренебрегать этой наукой, и уж точно нельзя говорить, что достаточно будет знать только сложения, вычитания, умножения и деления. А как вы считаете?

Источник

Насколько важна математическая подготовка в перспективных направлениях разработки ПО

Профессия программиста становится все более массовой и востребованной. Сейчас порог вхождения в ИТ-сферу в принципе снизился, но продолжает расти интерес к ИТ-технологиям в целом, и к программированию в частности.

Среди ИТ-компаний и программистов, тем не менее, растет конкуренция. Однако стоит отметить, что, по крайней мере, на рынке труда она достаточно честная. Например, принимая на работу программиста работодатель в первую очередь будет оценивать уровень реальных знаний и навыков, а не цвет диплома. Впрочем, эта ситуация способствует распространению «программистов-самоучек», которые ограничены узкой специализацией. Для них нередко оказывается справедливо выражение «шаг вправо, шаг влево – расстрел». Так что, сейчас недостаточно сказать: этот человек – «ИТшник», или даже программист. Программист программисту рознь.

Специализации программистов множатся и развиваются, программист, специализирующийся в одной области приложений, не всегда может понять своего коллегу, работающего в другой области. Хотя вроде бы и языки программирования, и технологии одни и те же. Области приложений могут кардинально отличаться друг от друга, и для того, чтобы писать специализированные программы, мало знать языки и технологии программирования, нужно хорошо разбираться в той области, для которой разрабатывается программный продукт. В последнее время все чаще при изучении предметной области возникает необходимость в математической формализации.

Я учился в ВУЗе, в котором раньше, лет 30-40 назад, не существовало специальности «Инженер-программист». Однако люди, занимающиеся программированием, там были – их называли «ПМщики». Дело в том, что учились они на кафедре Прикладной математики. Но справедливо было бы все-таки называть их математиками, нежели программистами.

Шли годы, и со временем кафедра стала курировать новую специальность – «Программное обеспечение вычислительной техники и автоматизированных систем». Математики в учебной программе стало гораздо меньше, а преподаватели начали сетовать, что у выпускников школ большие проблемы с математикой. То есть, зачисляясь на первый курс, многие студенты уже имеют достаточно слабую математическую базу, а так как времени на этот предмет теперь меньше в учебном плане, то надежды на улучшение ситуации мало.

Конечно, можно еще вспомнить, что раньше была и трава зеленее, и небо голубее… Но где же программистам прокачивать матчасть в сегодняшних условиях? Означает ли это, что теперь на «серьезные» позиции разработчиков будут охотнее брать математиков, а не программистов?

Новые реалии

Уже на последних курсах университета студенты часто узнают, что появились новые технологии, которые в ВУЗе не изучались: их просто не успели включить в учебную программу. Однако благодаря фундаментальному образованию, заложенным основам будущие специалисты могут легко изучить эти технологии самостоятельно. Но тут и встает вопрос о качестве этого образования. Всего ли там достаточно для сегодняшних требований рынка труда?

В последнее время новые технологии стали более наукоемкими – точнее, математикоемкими. Во многих областях человеческой деятельности стало активнее применяться математическое моделирование различных процессов, пишут в своем послании абитуриентам представители Новосибирского государственного технического университета.

Физическая реализация экспериментов, экспериментальная проверка выдвинутых гипотез являются очень дорогостоящими, как правило, требуют значительных человеческих и материальных ресурсов. А имитация экспериментов на математических моделях, выявление закономерностей в ходе многократного моделирования оказывается на порядки дешевле.

На основе математических моделей разрабатывается соответствующее программное обеспечение, реализующее математическую модель объекта и математические методы, позволяющие найти оптимальное решение. И если мы заменяем физический эксперимент математическим, то должны быть уверены, что их результаты совпадают. «И как тут специалисту по IT-технологиям обойтись без глубоких математических знаний и вычислительных методов?», задают вопрос они.

До начала 90-х годов, неспешно развивалась так называемая прикладная статистика. Но развивалась она больше в теоретическом плане, чем в практическом.

А «в один прекрасный» день настала необходимость адаптировать ее к практике. В связи с совершенствованием технологий записи и хранения данных на людей обрушились колоссальные потоки информации в самых различных областях. Деятельность любого предприятия (коммерческого, производственного, медицинского, научного и тд) теперь сопровождается регистрацией и записью всех подробностей его деятельности.

Стало ясно, что без продуктивной переработки потоки данных образуют никому не нужную свалку. Выявление в накопленной информации скрытых закономерностей является задачей интеллектуального анализа данных (Data Mining) – составной части процесса принятия решений. Если смотреть глубже, то в основе интеллектуального анализа данных лежит широкий спектр методов теории вероятностей и математической статистики.

Знания математики нужны большинству программистов, вот только какие именно разделы нужны для разработки того или иного вида ПО? Что нужно знать для того чтобы, программировать игры, искусственный интеллект, big data, научный софт и так далее?

Иван Хватов, разработчик ПО, «Яндекс»:

Насколько нужна программисту математика? Опишите, пожалуйста, свою историю отношений с матчастью.

В целом, нужна. В каких-то областях — больше, в каких-то — меньше. После университета в теорию погружался только если была необходимость по задачам.

В каких направлениях разработки необходима матчасть? Почему? Какие разделы математики там нужны?

Направлений много. Всего не перечислишь. Если, например, говорить про текущий хайп, то необходимо хорошо знать статистику. Базовый уровень, который надо знать везде: университетский курс математической логики, теории вероятности, статистики и дискретной математики.

Можете посоветовать, как подтянуть математический аппарат программистам, давно закончившим ВУЗ? Могут ли здесь быть какие-то сложности?

Проходить онлайн-курсы. Сейчас с этим нет проблем.

Чем отличается математическое мышление от программистского (алгоритмического)?

Не знаю, я бы это не разделял.

Какие специалисты лучше подходят для математикоемкой разработки: математики с азами программирования или программисты с азами математики?

Антон Каракулов, веб-разработчик, ТМ

Насколько нужна программисту математика? Опишите, пожалуйста, свою историю отношений с матчастью.

Всё зависит от того какие задачи предстоит решать программисту. Чем больше прикладных — тем реже нужна матчасть. Чем более системных — тем чаще оказывается востребованной.

К сожалению мои какие-либо внятные отношения с ней закончились на 2 курсе института. В тот момент ещё верилось, что она будет мне полезна и нужна, но в силу обстоятельств отвлёкся на другие знания, и потом уже было очень сложно вернуться к абстрактному изучению.

В каких направлениях разработки необходима матчасть? Почему? Какие разделы математики там нужны?

Как сказал уже выше, чем больше системных задач решается программистом, чем больше нужно знание матчасти. В названии мат. дисциплин всегда путался что к чему, поэтому тут что-то сказать уверено не могу.

Можете посоветовать, как подтянуть математический аппарат программистам, давно закончившим ВУЗ? Могут ли здесь быть какие-то сложности?

От тру-программиста слышал мнение что на coursera хорошие курсы на любой вкус. Можно начать с базовых, а дальше уже выбирать по интересам и необходимостям.

Чем отличается математическое мышление от программистского (алгоритмического)?

Математик определяет понятия (отвечает на вопрос «Что»), а программист транслирует их в машинный язык (отвечает на вопрос «Как»).

Какие специалисты лучше подходят для математикоемкой разработки: математики с азами программирования или программисты с азами математики?

В общем среднем по больнице — конечно, программисты с азами математики.

Артем Кухаренко, основатель NTechLab:

Насколько нужна программисту математика?

Если здесь имеется ввиду знание математики, то, на мой взгляд, оно обязательно далеко не во всех областях программирования, но лишним оно, конечно, тоже не будет. Я бы сказал, что в разных областях оно даст свой прирост к квалификации: в каких-то – 10%, в каких-то – 1000%.

Если имеется ввиду знание теории и основ области в которой человек работает, то, на мой взгляд, это must have для любого эксперта в своей области.

Опишите, пожалуйста, свою историю отношений с матчастью.

Учился в математическом классе одной из лучших матшкол Москвы — Гимназия №1543, потом учился на ВМК МГУ, где тоже была математика, не такая серьезная, конечно, как на МЕХМАТе МГУ например, но на достаточном уровне, чтобы можно было разбираться и понимать, например, современные алгоритмы машинного обучения. Плюс участвовал в школьных олимпиадах по программированию, где нужно было изучать теорию алгоритмов, что в дальнейшем мне очень сильно помогло.

В каких направлениях разработки необходима матчасть? Почему? Какие разделы математики там нужны?

Точно могу сказать, что математическая и алгоритмическая подготовка нужна в областях, связанных с машинным обучением, нейронными сетями, искусственным интеллектом. Мы активно пользуемся знаниями из следующих разделов: математический анализ, линейная алгебра, теория вероятности, линейное программирование и решение оптимизационных задач, алгоритмы, высокопроизводительные вычисления.

Можете посоветовать, как подтянуть математический аппарат программистам, давно закончившим ВУЗ? Какие курсы лучше посещать?

Сейчас появилось много открытых курсов, таких как Coursera, но в них обычно материал дается очень поверхностно, чтобы охватить как можно более широкую аудиторию. Есть, конечно, и исключения, но их мало. Есть несколько ресурсов, где материал дается на очень хорошем уровне, например, Stanford engineering everywhere: там просто записи лекций, которые читаются в Стэнфорде. На мой взгляд, их очень полезно смотреть если есть базовая подготовка.

Но нужно понимать, что получение хороших знаний в любой области – это достаточно долгий процесс и с нуля быстро (за несколько месяцев) получить хорошую математическую (как и любую другую) подготовку не получится. Если все-таки есть цель заняться этим серьезно, то, на мой взгляд, для этого лучше подойдет либо магистратура, либо второе высшее образование в математическом вузе.

Какие специалисты лучше подходят для математикоемкой разработки: математики с азами программирования или программисты с азами математики?

У нас в компании разработка и исследования разделены. Для разработки больше подходят программисты с азами математики, для исследований — математики с азами программирования. Но в обоих командах очень часто встречаются люди, у которых одновременно очень высокий уровень знаний и математики и программирования.

Пользователь Mrrl, рассуждая о разделах математики, необходимых программистам, писал следующее:

1) Математический анализ — без него просто никуда, основа всех численных моделей.

2) Алгебра (высшая) — применяется довольно редко. Либо в виде теории групп — когда нужно что-нибудь сделать с группами вращений или движений пространства, либо в виде конечных групп/полей, где она смыкается с теорией чисел. Но если уж пришлось туда забрести, то приходится использовать активно. Если и не в коде, то в разработке алгоритмов.

3) Аналитическая геометрия — думаю, она нужна любому, кто связан с компьютерной графикой, компьютерной геометрией, моделированием в 3D…

4) Линейная алгебра и геометрия — аналогично аналитической геометрии. Плюс матрицы вылезают во многих задачах обработки информации.

5) Дискретная математика — графы сюда входят? А булева алгебра? А конечные автоматы? Для разработки алгоритмов будет использоваться часто, пусть и в фоновом режиме.

6) Математическая логика — разве что на уровне понимания логических операций и кванторов. Чтобы доказать правильность программ, и реже — чтобы их спроектировать исходя из «дано» и «получить». Может помочь, когда условия задачи слишком формальны и упорно не хотят восприниматься мозгом.

7) Дифференциальные уравнения — если они не являются частью предметной области, то встречаются редко. Чаще в качестве такого же вспомогательного инструмента, как производящие функции. Или для анализа данных, оптимизационных алгоритмов…

8) Дифференциальная геометрия. — Бывает. Когда приходится работать с многопараметрической моделью, полезно представлять себе свойства пространства параметров. Чаще всего это ограничивается метрикой — даже геодезические считать не приходится. Ну, и есть один специфический случай — программы, в которых дело идёт в пространстве Лобачевского.

9) Топология — кроме трассировки плат не могу представить, где она нужна. Возможно, в компьютерной геометрии, например, при построении поверхности по одному или нескольким облакам точек, при расчётах взаимодействия тел, для поиска пути в пространстве допустимых параметров какого-нибудь робота… Но я этим пока не занимался, и насколько нужна именно топология, не знаю. Для разработки алгоритмов, думаю, нужна.

10) Функциональный анализ — не помню, что туда входит. Но если базисы семейств функций (ряды Фурье и более сложные системы) изучаются там, то это полезно. Бесконечномерные пространства, скорее всего, не потребуются.

11) Интегральные уравнения — не сталкивался. Возможно, потому, что в качестве отдельного предмета я их не знаю.

12) Теория функций комплексного переменного — линейные и рациональные функции очень полезны для работы с движениями плоскости и сферы, с комплексными числами работать проще, чем с ортогональными матрицами. Ещё в комплексном поле удобно решать системы полиномиальных уравнений (они редко, но встречаются). И то же пространство Лобачевского в комплексных координатах выглядит приятнее.

13) Уравнения в частных производных — если не часть предметной области… могут пригодиться для каких-нибудь вариантов гладкой интерполяции данных (когда работы с базисными функциями почему-то не хватает). Насколько УрЧП нужны для моделирования, скажем, морской поверхности в компьютерной графике, не знаю — не занимался. Подозреваю, что нужны.

14) Теория вероятностей, математическая статистика, теория случайных процессов — в разной степени в любом анализе данных.

15) Вариационное исчисление и методы оптимизации — ИИ в играх и роботехника.

16) Методы вычислений и численные методы — сколько угодно. Если работа связана хоть с какими-нибудь вещественными числами.

17) Теория чисел — аналогично теории конечных групп. В целом, встречается нечасто. Если, конечно, не считать современной криптографии…

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • для чего нужна локальная учетная запись в windows 10
  • Для чего нужна линейная алгебра программисту
  • Для чего нужна консоль windows
  • для чего нужна командная строка в windows
  • Для чего нужна командная строка windows

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии