физика плазмы учебное пособие

Физика плазмы для физиков, Арцимович Л.А., Сагдеев Р.З.,1979

Физика плазмы для физиков, Арцимович Л.А., Сагдеев Р.З.,1979.

§ 1.1. Общие сведения о плазме

Плазмой называется ионизованный газ. в котором атомы (все или значительная их часть) потеряли по одному или по несколько принадлежавших им электронов и превратились в положительные ионы. Это только предварительное определение плазмы как особого состояния вещества. В дальнейшем будет дано более точное определение. В общем случае плазма представляет собой смесь трех компонент. Она содержит свободные электроны, положительные ионы и нейтральные атомы (или молекулы). Плазма — это наиболее распространенное состояние вещества в природе.

Солнце и звезды можно рассматривать как гигантские сгустки горячей плазмы. Внешняя часть земной атмосферы представляет собой плазменную оболочку — ионосферу. За пределами ионосферы, в магнитосферу Земли, простираются плазмосфера и так называемые радиационные пояса, которые представляют собой своеобразные плазменные образования. В земных условиях в лаборатории и в технике мы встречаемся с плазмой при различных газовых разрядах, так как любой разряд (молния, искра. Дуга и т. д.) всегда связан с возникновением плазмы.

Столкновение частиц в плазме

Проанализируем общую картину движения электронов и ионов в плазме при отсутствии внешних полей. Характер этого движения определяется законами взаимодействия частиц. В плазме с высокой степенью ионизации основная форма взаимодействия частиц — рассеяние я кулоновском поле. Нужно различать три основных типа элементарных актов рассеяния: рассеяние электронов на нонах, электронов на электронах и ионов на ионах. Другие элементарные процессы происходят либо с излучением фотонов (они будут рассмотрены в § 1.8), либо в них участвуют также и нейтральные частицы (и тогда они отступают на задний план по мере повышения степени ионизации).

Примером процессов первого-рода может служить испускание тормозного излучения при электрон-ионных столкновениях, примером второго—процессы ионизации и возбуждения атомов электронным ударом к явления перезарядки ионов на атомах. Если рассматривается неводородная плазма, то в общем случае следует учитывать взаимодействие электронов с ионами, находящимися в различных энергетических состояниях. В этом случае интенсивность излучения возбужденных ионов может оказаться очень большой, она будет играть заметную роль в энергетическом балансе плазменных процессов.

Мы ограничимся, в основном, анализом взаимодействия частиц в полностью ионизованной плазме.
Пусть через плазму проходит некоторая «пробная» частица (в качестве таковой мы можем выбрать любой электрон или ион плазмы, зафиксировав внимание на его траектории). Эта заряженная частица испытывает акты рассеяния на своем пути. Если речь идет о движении легкой частицы среди совокупности тяжелых частиц (электрона среди ионов), то центры рассеяния можно считать неподвижными. В указанном случае вероятность рассеяния на тот или иной угол определяется классической формулой Резер-форда.

ОГЛАВЛЕНИЕ
Предисловие
1. ПЛАЗМА БЕЗ МАГНИТНОГО ПОЛЯ
§1.1. Общие сведения о плазме
§ 1.2. Плазменные колебания
§ 1.3. Классификация видов плазмы
§ 1.4. Столкновения частиц в плазме
§ 1.5. Явления переноса в плазме
§ 1.6. Плазма в высокочастотной поле
§ 1.7. Проникновение электромагнитной волны в плазму. Трансформация в плазменные колебания
§ 1.8. Излучение плазмы
§ 1.9. Кинетическое уравнение для плазмы
§ 1.10. Гидродинамическое описание плазмы
§ 1.11. Звук в плазме
§ 1.12. Кинетическая теория ноли в плазме
§ 1.13. Кинетическая теория волн в плазме (ленгмюровские колебания)
§ 1.14. Пучковая неустойчивость
§ 1.15. Параметрическая неустойчивость
§ 1.16: Резонансное взаимодействие волк и частиц (квазиливейная теория)
§ 1.17. Резонансное взаимодействие волн и частиц (индуцированное рассеяние)
§ 1.18. Нелинейное взаимодействие волн в слабой турбулентности
§ 1.19. Модуляционная неустойчивость и коллапс ленгмюровских волн
§ 1.20. Стационарные нелинейные волны
2. ПЛАЗМА В МАГНИТНОМ ПОЛЕ
§ 2.1. Движение заряженных частиц в магнитном поле
§ 2.2. Примеры движения частиц в магнитном поле
§ 2.3. Адиабатические инварианты движения частиц в магнитном поле
§ 2.4. Кинетическая теория плазмы в магнитном поле
§ 2.5. Гидродинамика плазмы в магнитном поле
§ 2.6. Колебания и волны в плазме с магнитным полем
§ 2.7. Кинетическая теория волн в плазме
§ 2.8. Взаимодействие волн с частицами плазмы в магнитном поле и квазилинейная диффузия
§ 2.9. Равновесие плазмы в магнитном поле
§ 2.10. Примеры равновесия плазмы в магнитном поле. Токамак
§ 2.11. Устойчивость границы плазмы в магнитном поле
§ 2.12. Желобковая неустойчивость плазмы и энергетический принцип устойчивости в магнитной гидродинамике
§ 2.13. Стабилизация магнитогидродинамических неустойчивостей в термоядерных ловушках
§ 2.14. Магнитогидродинамическая неустойчивость равновесия при конечной электропроводности
§ 2.15. Неустойчивость тиринг-моды
§ 2.16. «Дрейфовая» неустойчивость плазмы
§ 2.17. Микронеустойчивость плазмы и аномальная диффузия
§ 2.18. Энергетический баланс плазмы в токамаке
§ 2.19. Аномальное сопротивление в плазме и образование двойных слоев
§ 2.20. Бесстолкновительные ударные волны
§ 2.21. Генерация и усиление магнитного поля
Список литературы
Алфавитно-предметный указатель

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Источник

Основы физики плазмы, Кролл Н., Трайвелпис А., 1975

Основы физики плазмы, Кролл Н., Трайвелпис А., 1975.

РАВНОВЕСИЕ И КВАЗИРАВНОВЕСИЕ.

Термин равновесие часто не вполне точно используется в физике плазмы для описания квазистацнонарного состояния плазмы, которое было бы вполне стационарным в отсутствие столкновении частиц друг с другом. Обычно научается поведение плазмы при малых отклонениях от такого квазиравновесного состояния.

Термодинамическое равновесие означает, что как ионы, так и электроны описываются максвелловским распределением, характеризуемым одной и той же температурой. При этом среда находится в равновесии со своим окружением и скорости излучения и поглощения энергии одинаковы. Спектр излучения при этом соответствует излучению черного тела.
Существует много интересных теоретических и экспериментальных ситуаций, когда ионы и электроны в плазме имеют разные температуры и не находятся в термодинамическом равновесии с окружающим их веществом. Термин квази равновесие используется для описания состояний, которые изменяются во времени только вследствие парных столкновений.

УСТОЙЧИВОСТЬ ПЛАЗМЫ И УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ.

То же самое рассуждение, которое использовалось для объяснении затухания Ландау, приводит к более удивительным заключениям в случае неравновесной функция распределения, такой- например, как показано на фиг. 2. Волна, распространяющаяся со скоростью w/k = v0, «видит» большее число электронов, слегка обгоняющих ее, чем отстающих от нее. Следовательно, отбирая у быстрых электронов больше энергии, чем она отдает медленным, волна должна усиливаться. Это нарастание ленгмюровских волн в плазме с немаксвелловским распределением (фиг. 2) — один из примеров характерного для плазмы явления, называемого неустойчивостью. Неустойчивость представляет собой процесс нарастания со временем малых возмущений квазиравновесного состояния плазмы. Вообще говоря, в неустойчивости проявляется способность плазмы релаксировать благодаря коллективным процессам из неполностью равновесного состояния за время, которое много меньше времени между парными столкновениями. Практически же неустойчивость часто означает способность плазмы выйти из области с такой конфигурацией полей, в которой одна заряженная частица находилась бы неограниченно долго.

Целью многих исследований был поиск конфигураций полей, обеспечивающих удержание плотной высокотемпературной плазмы в течение времени, достаточного для того, чтобы энергия, выделившаяся в прошедших реакциях синтеза, превысила энергию, затраченную на создание и удержание плазмы. Неустойчивости приводят к разрушению ограниченных плазменных образований. Поэтому исследования устойчивости плазмы начались почти сразу же после первых экспериментов по удержанию плазмы. Если бы

ОГЛАВЛЕНИЕ
Предисловие редактора перевода
Предисловие авторов
Глава I. ВВЕДЕНИЕ В ФИЗИКУ ПЛАЗМЫ
А. ОБЩИЕ ПРЕДСТАВЛЕНИЯ И ТЕРМИНОЛОГИЯ ФИЗИКИ ПЛАЗМЫ
§ 1. Равновесие и квазиравновесие
§ 2. Дебаевский радиус экранирования
§ 3. Параметр неидеальности плазмы
§ 4. Функция распределения
§ 5. Температура а другие монеты функции распределения
§ 6. Магнитное давление
§ 7. Дрейф частиц
§ 8. Плазменная частота
§ 9. Волны в плазме
§ 10. Затухание Ландау
§ 11. Устойчивость плазмы и управляемый термоядерные синтез
§ 12. Ударные волны и солитовы
§ 13. Столкновения
§ 14. Классическая и бомовская диффузия
§ 15. Излучение плазмы
Б. СОЗДАНИЕ ПЛАЗМЫ
§ 16. Разряд низкого давления с холодным катодом
§ 17. Термоэмиссионный дуговой разряд
§ 18. Плазменные пушки
§ 19. Плазма паров щелочных металлов. Q-машины
§ 20. Плазма высокочастотного разряда
§ 21. Плазменный фокус
§ 22. Солнечная плазма
§ 23. Лазерная плазма
В. ДИАГНОСТИКА ПЛАЗМЫ
§ 24. Измерение тока и напряжения в плазме
§ 25. Плазменные зонды
§ 26. Другие методы диагностики плазмы
Цитированная литература
Дополнительная литература
Глава 2. ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ МЕХАНИКА РАВНОВЕСНОЙ ПЛАЗМЫ
§ 1. Параметр неидеальности
§ 2. Распределение Гиббса и корреляционные функции
§ 3. Двухчастичные корреляции в равновесной плазме
§ 4. Свободная энергия плазмы
§ 5. Уравнение состояния плазмы
§ б. Плазма как жидкость
§ 7. Идеальная плазма
§ 8. Потенциал пробного заряда в плазме
§ 9. Другие примеры применения гидродинамической модели плазмы
§ 10. Кулоновская энергия плазмы
§ 11. Обсуждение
Цитированная литература
Дополнительная литература
Глава 3. МАКРОСКОПИЧЕСКИЕ СВОЙСТВА ПЛАЗМЫ
§ 1. Функция распределения и уравнение Лиувилля
§ 2. Макроскопические параметры плазмы
§ 3. Макроскопические (гидродинамические) уравнения плазмы
§ 4. Двухжидкостная модель плазмы
§ 5. Одножидкостная модель плазмы
§ 6. Основные приближения, используемые в одножидкостной теории
§ 7. Упрощенные одножидкостные и магнитогидродинамические (МГД) уравнения
§ 8. Свойства плазмы, описываемой одножидкостной и МГД-теориями
§ 9. Динамические свойства плазмы, описываемой одножидкостной и МГД- теориями
§ 10. Теория Чу — Голдбергера — Лоу
§ 11. Динамический пинч
Цитированная литература
Дополнительная литература
Глава 4. ВОЛНЫ В ПЛАЗМЕ. ГИДРОДИНАМИЧЕСКОЕ ОПИСАНИЕ
§ 1. Диэлектрическая проницаемость холодной плазмы в отсутствие внешних полей (Е0 = В0 = 0)
§ 2. Плазменные колебания
§ 3. Плазменные колебания в одномерном потоке
§ 4. Волны пространственного заряда в горячей плазме
§ 5. Поперечные волны в холодной плазме
§ 6. СВЧ-диагностика плазмы
§ 7. Резонансные колебания плазменного столба
§ 8. Волны пространственного заряда в ограниченной плазме
§ 9. Диэлектрическая проницаемость холодной замагниченной плазмы (Е0 = О, В0 = B0z)
§ 10. Волны в холодной замагниченной плазме, распространяющиеся параллельно магнитному полю (Е0 — 0, В0 = В0z)
§ 11. Волны в холодной замагниченной плазме, распространяющиеся перпендикулярно магнитному полю (Е0 = 0, В0 = В0z)
§ 12. Частоты волн в типичных плазмах
§ 13. Волны пространственного заряда в ограниченной холодной плазме в присутствии конечного магнитного поля
§ 14. Низкочастотные дрейфовые волны в неоднородной плазме
Цитированная литература
Дополнительная литература
Глава 5. УСТОЙЧИВОСТЬ ПЛАЗМЫ ГИДРОДИНАМИЧЕСКОЕ РАССМОТРЕНИЕ
А. ПРОБЛЕМА УСТОЙЧИВОСТИ ПЛАЗМЫ
§ 1. Проблема равновесия
§ 2. Классификация плазменных неустойчивостей
§ 3. Методы исследования устойчивости
§ 4. Области устойчивости
Б. УСТОЙЧИВОСТЬ НЕОГРАНИЧЕННОЙ ПЛАЗМЫ В РАМКАХ МАКРОСКОПИЧЕСКИХ ГИДРОДИНАМИЧЕСКИХ УРАВНЕНИЙ
§ 5. Двухпотоковая неустойчивость волн пространственного заряда
§ 6. Шланговая неустойчивость альфвеновской волны
В. УСТОЙЧИВОСТЬ ПЛАЗМЫ. УДЕРЖИВАЕМОЙ МАГНИТНЫМ ПОЛЕМ. В РАМКАХ МАКРОСКОПИЧЕСКИХ ГИДРОДИНАМИЧЕСКИХ УРАВНЕНИЙ
§ 7. Гидродинамическая устойчивость плазмы, удерживаемой магнитным полем в поле силы тяжести
§ 8. Гидродинамическая устойчивость плазмы, удерживаемой магнитным полем, с точки зрения термодинамики; желобковая (перестановочная) неустойчивость
§ 9. Макроскопические уравнения, описывающие гидродинамическую устойчивость плазмы, удерживаемой магнитным нолем
§ 10. Гидродинамическая устойчивость плазмы, удерживаемой магнитным полем в поле силы тяжести. Анализ собственных колебаний (линейная теория устойчивости)
§ 11. Энергетический принцип
§ 12. Исследование устойчивости плоской границы плазма — магнитное поле на основании энергетического принципа
§ 13. Исследование устойчивости самоудерживаемой плазмы (Вz = 0) на основании энергетического принципа
§ 14. Стабилизация за счет закрепления концов силовых линий
Г. ТЕОРИЯ УСТОЙЧИВОСТИ И ИССЛЕДОВАНИЯ В ОВЛАСТИ УПРАВЛЯЕМОГО ТЕРМОЯДЕРНОГО СИНТЕЗА
§ 15. Эксперименты по удержанию плазмы в открытых конфигурациях
§ 16. Эксперименты по удержанию плазмы в замкнутых конфигурациях
§ 17. Другие эксперименты по удержанию плазмы
Цитированная литература
Дополнительная литература
Глава 6. ЯВЛЕНИЯ ПЕРЕНОСА В ПЛАЗМЕ
§ 1. Парные кулоновские столкновения
§ 2. Отклонение заряженной частицы при многократных кулоновских столкновениях
§ 3. Теория явлений переноса в полностью ионизованной плазме, основанная на уравнении Фоккера — Планка
§ 4. Времена релаксации в полностью ионизованной плазме
§ 5. Явления переноса в полностью ионизованной плазме
§ 6. Кинетическое уравнение Больцмана и модель Лоренца для слабоионизованной плазмы
§ 7. Модифицированное уравнение Вольцмана
§ 8. Коэффициенты переноса в слабоионизованной плазме
§ 9. Амбиполярная диффузия
§ 10. Коэффициенты переноса в слабоионизованной плазме, находящейся в постоянном однородном магнитном поле
§ 11. Амбиполярная диффузия слабоионизованной плазмы поперек магнитного поля
§ 12. МГД-генераторы энергии
Цитированная литература
Дополнительная литература
Глава 7. КИНЕТИЧЕСКИЕ УРАВНЕНИЯ ДЛЯ ПЛАЗМЫ
§ 1. Микроскопические уравнения для системы многих тел
§ 2. Статистические уравнения для системы многих тел
§ 3. Кинетические уравнения для кулоновской плазмы
§ 4. Замыкание цепочки кинетических уравнений
§ 5. Кинетическое уравнение нулевого приближения — уравнение Власова
§ 6. Кинетическое уравнение первого приближения
§ 7. Свойства уравнения Власова
§ 8. Свойства кинетического уравнения первого приближения
Цитированная литература
Дополнительная литература
Глава 8. КИНЕТИЧЕСКАЯ ТЕОРИЯ ПЛАЗМЕННЫХ ВОЛН
§ 1. Уравнение Власова
§ 2. Линеаризованное уравнение Власова
§ 3. Решение линеаризованных уравнений Власова — Максвелла дли электростатических возмущений в отсутствие внешних полей
§ 4. Асимптотические решения для Фk (t)
§ 5. Упрощенный вывод электростатических волн в плазме
§ 6. Теория ленгмюровских и ионно-звуковых волн, основанная на уравнении Власова. Затухание Ландау (Ео = Во = 0).
§ 7. Возмущение функции распределения плазмы при распространении в ней плазменных волн
§ 8. Дисперсионное уравнение для волн в плазме с произвольным равновесным распределением
§ 9. Кинетическая теория волн малой амплитуды в изотропной плазме. Электростатические и электромагнитные волны (Е = В0 = 0, f0 = f0 (v)|
§ 10. Кинетическая теории волн малой амплитуды в однородно замагниченной плазме (В0 = B0z, Е0 = 0, fao = fao (v2I, vII)I
§ 11. Кинетическая теория вола в холодной замагниченной плазме
§ 12. Волны, распространяющиеся поперек магнитного поля в горячей замагниченной плазме (Е0 = 0, В0 = В0z). Электромагнитные волны и бернстейновские моды
§ 13. Волны, распространяющиеся параллельно магнитному нолю в горячей замагниченной плазме. Электростатические и электромагнитные волны (Е0 = 0, В0 = В0z)
§ 14. Электромагнитные волны, распространяющиеся под произвольным углом к магнитному полю в горячей замагниченной плазме (Б0 = 0, В0 = B0z)
§ 15. Волны в неоднородной горячей замагниченной плазме (Е0 = 0, В0 = B0 (х) z, п0 = п0 (х))
§ 16. Низкочастотные электростатические волны в неоднородной замагниченной плазме
§ 17. Нелинейные электростатические волны (БГК-волны)
§ 18. Сравнение гидродинамической теории плазменных волн с кинетической теорией
§ 19. Основные результаты кинетической теории волн
Цитированная литература
Дополнительная литература
Глава 9. КИНЕТИЧЕСКАЯ ТЕОРИЯ УСТОЙЧИВОСТИ ПЛАЗМЫ
§ 1. Введение
§ 2. Устойчивость монотонно убывающих распределений. Теорема Ньюкомба — Гарднера 11, 21
§ 3. Устойчивость немонотонных распределений. Двухиотоковая неустойчивость
§ 4. Устойчивость немонотонных распределений в горячей плазме. Неустойчивость пучка с тепловым разбросом скоростей
§ 5. Механизм двухпотоковой неустойчивости
§ 6. Метод Найквиста и критерий устойчивости Пепроуза
§ 7. Ионно-звуковая неустойчивость
§ 8. Применение теории двухпотоковой неустойчивости
§ 9. Неустойчивости анизотропной плазмы
§ 10. Электромагнитные неустойчивости (по отношению к пинчеванию)
§ 11. Неустойчивости по отношению к пинчеванию
§ 12. Устойчивость анизотропной замагниченной плазмы
§ 13. Конусная неустойчивость
§ 14. Термодинамические ограничения уровня шумов и инкрементов в неустойчивой плазме
Цитированная литература
Дополнительная литература
Глава 10. НЕЛИНЕЙНАЯ КИНЕТИЧЕСКАЯ ТЕОРИЯ ПЛАЗМЕННЫХ ВОЛН И НЕУСТОЙЧИВОСТЕЙ
§ 1. Необходимость в нелинейной теории плазмы
§ 2. Квазилинейные уравнения для функции распределения плазмы [1—3]
§ 3. Закон сохранения числа частиц, импульса и энергии в квазилинейной теории
§ 4. Затухание Ландау в квазилинейной теории
§ 5. Неустойчивость теплого пучка в квазилинейной теории
§ 6. Квазилинейная теория двухпотоковой неустойчивости
§ 7. Захват электронов отдельной плазменной волной
§ 8. Плазменно-волновое эхо
§ 9. Нелинейные взаимодействия волн и частиц (слабая турбулентность)
Цитированная литература
Дополнительная литература
Глава 11. ФЛУКТУАЦИИ, КОРРЕЛЯЦИИ И ИЗЛУЧЕНИЕ
§ 1. Экранирование движущегося пробного заряда
§ 2. Флуктуации электрического поля в плазме
§ 3. Флуктуации электрического поля в немаксвелловской плазме
§ 4. Торможение пробной частицы. Излучение электростатических волн
§ 5. Электромагнитные флуктуации и излучение
§ 6. Рассеяние некогерентного излучения на флуктуациях плотности плазмы
§ 7. Излучение плазмы. Закон Кирхгофа
§ 8. Равновесное излучение плазмы
§ 9. Циклотронное (синхротронное) излучение замагниченной плазмы
§ 10. Расчет излучения плазмы методом пробных источников
§ 11. Кинетические уравнения, учитывающие столкновительную релаксацию в плазме
Цитированная литература
Дополнительная литература
Приложение 1. ДВИЖЕНИЕ ЧАСТИЦ
§ 1. Уравнения движения
§ 2. Движение частицы в однородных статических электрическом и магнитном полях
§ 3. Движение частицы в медленно меняющихся однородных электрическом и магнитном полях
§ 4. Движение частицы в постоянном однородном магнитном поле и быстро меняющемся электрическом поле малой амплитуды
§ 5. Движение частицы в поле однородной плоской электромагнитной волны большой амплитуды
§ 6. Движение частицы в постоянном неоднородном магнитном ноле
§ 7. Адиабатические инварианты
§ 8. Свойства плазмы, следующие из теории орбит
Цитированная литература
Дополнительная литература
Приложение II. ОСНОВНЫЕ СВОЙСТВА ВЕКТОРОВ И ТЕНЗОРОВ; НЕКОТОРЫЕ ИНТЕГРАЛЬНЫЕ ТЕОРЕМЫ; КРИВОЛИНЕЙНЫЕ КООРДИНАТЫ
Приложение III. СИСТЕМЫ ЕДИНИЦ; СООТНОШЕНИЯ МЕЖДУ ЕДИНИЦАМИ ИЗМЕРЕНИЯ; СПИСОК ОБОЗНАЧЕНИИ
§ 1. Системы единиц
§ 2. Соотношения между единицами измерения и некоторые физические константы
§ 3. Используемые обозначения
Приложение IV. ЛИТЕРАТУРА ДЛЯ ДОПОЛНИТЕЛЬНОГО ЧТЕНИЯ
Именной указатель
Предметный указатель

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Источник

Физика (наука)

Скачать Советский учебник

Назначение: учебное пособие для ВУЗов, Пособие посвящено гидродинамическим аспектам и при электродным явлениям в физике плазмы, составляющим основу многих промышленных технологий. В книге приведены общие сведения из физики плазмы, основные критерии применимости различных подходов и моделей при описании процессов. Обсуждены свойства и особенности стационарных и нестационарных разрядов, рассмотрена физическая природа различных контракций и даны практические предложения.

Авторство: Синкевич О.А., Стаханов И.П.

Формат: DjVu, Размер файла: 2 MB

СОДЕРЖАНИЕ

Глава I. Основные гидродинамические модели плазмы

§ 1.1. Одножидкостная гидродинамика плазмы

1.1.1. Основные уравнения гидродинамики столкновительной плазмы

1.1.2. Гидродинамика идеально проводящей плазмы

1.1.3. Гидродинамика бесстолкновительной анизотропной плазмы

§ 1.2. Двухжидкостная гидродинамика плазмы

1.2.1. Возникновение горячих электронов. Ионизационное равновесие в многокомпонентной плазме

1.2.2. Гидродинамика плазмы с горячими электронами и холодными тяжелыми частицами

1.2.3. Гидродинамика полностью ионизованной двухкомпонентной плазмы

§ 1.3. Многожидкостная гидродинамика плазмы и процессы на границах

1.3.1. Плазма с неравновесными внутренними степенями свободы

1.3.2. О ламинарных и турбулентных плазменных течениях

1.3.3. Система уравнений турбулентных течений снльностолкновительной плазмы

1.3.4. Граничные условия для плазменных задач

Глава II. Положительный столб. Процессы в объеме

§ 2.1. Установившийся положительный столб электрического разряда

2.1.1. Образование положительного столба разряда. Амбиполярная диффузия

2.1.2. Разряд в термически неравновесной плазме (тлеющий разряд)

2.1.3. Термически равновесный электрический разряд, стабилизированный стенками (электрическая дуга)

2.1.4. Излучающие термически равновесные разряды

2.1.5. Разряд в продольном потоке охлаждающего газа

2.1.6. Разряд в поперечном потоке охлаждающего газа

§ 2.2. Контракция электрических разрядов

2.2.1. Элементарные понятия об устойчивости. Контракция

2.2.2. Устойчивость электрической дуги

2.2.3. Тепловая контракция в термически равновесном цилиндрическом разряде

2.2.4. Контракция в тлеющем разряде

2.2.5. Контракция (расслоение) плоского разряда

§ 2.3. Квазистационарные разряды (качественный анализ)

2.3.1. Страты в положительном столбе

2.3.2. Конвекция в термически неравновесном разряде в продольном магнитном поле

2.3.3. Токовая конвекция в термически равновесных разрядах во внешнем и собственном магнитных полях

Глава III. Приэлектродные явления.

§ 3.1. Механизмы эмиссии электрического тока

3.1.1 Термоэлектронная эмиссия

3.1.2. Автоэлектронная эмиссия

3.1.3. Автотермоэлектронная эмиссия

3.1.4. Вторичная эмиссия с холодного катода (элементарные представления)

§ 3.2. Приэлектродные слон в разряде низкого давления

3.2.1. Бесстолкновительный плоский слой объемного заряда (вакуумный диод)

3.2.2. Катодный и анодный слон тлеющего разряда

3.2.3. Понятие о процессе взрывной эмиссии

§ 3.3. Приэлектродный слой объемного заряда

3.3.1. Термодинамически равновесный ленгмюровский слой

3.3.2. При электродные слои в отсутствие термодинамического равновесия

3.3.3. Слой на неэмиттирующим электроде

§ 3.4. Структура столкновительного при электродного слоя

3.4.1. Релаксационный (кнудсеновскнй) прнэлектродный слой в перекомпенсированном режиме

3.4.2 Структура релаксационного слоя вблизи неэмиттируюшего электрода

3.4.3. Структура приэлектродного слоя неравновесной ионизации

КАК ОТКРЫВАТЬ СКАЧАННЫЕ ФАЙЛЫ?

СМОТРИТЕ ЗДЕСЬ

Скачать. DjVu

Кроме особенностей плазмы, отмеченных во введении, многие явления в ней сопровождаются протеканием различного рода реакций: реакций ионизации, связанных с превращением нейтральных частиц в заряженные; рекомбинации, когда взаимодействие заряженных частиц приводит к образованию нейтральных атомов; реакций возбуждения колебательных и вращательных степеней свободы; различного рода химических реакций (например, диссоциации и ассоциации) и т. д. Поскольку для каждой из реакций характерна своя кинетика — скорость процесса, зависящая от температуры и давления, то в отдельных областях неоднородной плазмы могут преобладать различные реакции.

Так в центре разряда, где температура высока, преобладают процессы ионизации, на границе с холодной средой — рекомбинации. Кроме кинетики реакции для анализа различных явлений необходимы сведения о коэффициентах переноса, рассчитанных с учетом элементарных процессов в плазме. Исследования кинетики процессов в плазме и расчеты коэффициентов переноса требуют отдельных рассмотрений, а в данной книге используются лишь сведения о них, необходимые для разбираемых задач. Более подробно с этими вопросами можно познакомиться в монографиях [6, 7]. Здесь же будут обсуждаться основные гидродинамические модели, используемые в плазме.

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • ярмольник ведущий каких программ
  • Ярлыки не работают что делать если ярлыки не открываются как восстановить ярлыки программы
  • Ярлык стал белым что делать windows 10
  • японская система развития интеллекта и памяти программа 60 дней читать
  • японская система развития интеллекта и памяти программа 60 дней питер

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии