SHA256
Криптографические хэш-функции-это математические операции, выполняемые с цифровыми данными; сравнивая вычисленный «хэш» (результат выполнения алгоритма) с известным и ожидаемым хэш-значением, человек может определить целостность данных. Например, вычисление хэша загруженного файла и сравнение результата с ранее опубликованным результатом хэша может показать, была ли загрузка изменена или подделана. Ключевым аспектом криптографических хэш-функций является их сопротивление столкновению: никто не должен быть в состоянии найти два разных входных значения, которые приводят к одному и тому же хэш-выходу.
SHA-2 включает значительные изменения от своего предшественника, SHA-1. SHA-2 семья состоит из шести хэш-функции с дайджест (хэш-значений), которые находятся 224, 256, 384 или 512 бит: алгоритм SHA-224, SHA-256, SHA-384, алгоритм SHA-512, алгоритм SHA-512/224, алгоритм SHA-512/256.
SHA-256 и SHA-512 являются новыми хэш-функциями, вычисленными с 32-разрядными и 64-разрядными словами соответственно. Они используют различные количества сдвига и аддитивные константы, но их структуры в остальном практически идентичны, отличаясь только количеством раундов. SHA-224 и SHA-384 являются просто усеченными версиями первых двух, вычисленными с различными начальными значениями. SHA-512/224 и SHA-512/256 также являются усеченными версиями SHA-512, но начальные значения генерируются с использованием метода, описанного в федеральных стандартах обработки информации (FIPS) PUB 180-4. SHA-2 было опубликовано в 2001 Национальным Институтом стандартов и технологии (NIST) Федеральный стандарт США (FIPS). Семейство алгоритмов SHA-2 запатентовано в патенте США 6829355. Соединенные Штаты выпустили патент под безвозмездной лицензией.
В настоящее время лучшим публичные нападки сломать прообраз сопротивление по 52 из 64 раундов SHA-256 или 57 из 80 раундов алгоритма SHA-512, и столкновения сопротивление по 46 из 64 раундов алгоритма SHA-256.
Пошагово объясняем, как работает алгоритм хеширования SHA-2 (SHA-256)
Авторизуйтесь
Пошагово объясняем, как работает алгоритм хеширования SHA-2 (SHA-256)
Автор Мария Багулина
SHA-2 (Secure Hash Algorithm 2) — одно из самых популярных семейств алгоритмов хеширования. В этой статье мы разберём каждый шаг алгоритма SHA-256, принадлежащего к SHA-2, и покажем, как он работает на реальном примере.
Что такое хеш-функция?
Если вы хотите узнать больше о хеш-функциях, можете почитать Википедию. Но чтобы понять, о чём пойдёт речь, давайте вспомним три основные цели хеш-функции:
SHA-2 и SHA-256
SHA-2 — это семейство алгоритмов с общей идеей хеширования данных. SHA-256 устанавливает дополнительные константы, которые определяют поведение алгоритма SHA-2. Одной из таких констант является размер вывода. «256» и «512» относятся к соответствующим размерам выходных данных в битах.
Мы рассмотрим пример работы SHA-256.
SHA-256 «hello world». Шаг 1. Предварительная обработка
1. Преобразуем «hello world» в двоичный вид:
2. Добавим одну единицу:
3. Заполняем нулями до тех пор, пока данные не станут кратны 512 без последних 64 бит (в нашем случае 448 бит):
4. Добавим 64 бита в конец, где 64 бита — целое число с порядком байтов big-endian, обозначающее длину входных данных в двоичном виде. В нашем случае 88, в двоичном виде — «1011000».
Теперь у нас есть ввод, который всегда будет без остатка делиться на 512.
Шаг 2. Инициализация значений хеша (h)
Создадим 8 значений хеша. Это константы, представляющие первые 32 бита дробных частей квадратных корней первых 8 простых чисел: 2, 3, 5, 7, 11, 13, 17, 19.
Шаг 3. Инициализация округлённых констант (k)
Создадим ещё немного констант, на этот раз их 64. Каждое значение — это первые 32 бита дробных частей кубических корней первых 64 простых чисел (2–311).
Шаг 4. Основной цикл
Шаг 5. Создаём очередь сообщений (w)
1. Копируем входные данные из шага 1 в новый массив, где каждая запись является 32-битным словом:
2. Добавляем ещё 48 слов, инициализированных нулями, чтобы получить массив w[0…63] :
3. Изменяем нулевые индексы в конце массива, используя следующий алгоритм:
Давайте посмотрим, как это работает для w[16] :
Это оставляет нам 64 слова в нашей очереди сообщений ( w ):
Шаг 6. Цикл сжатия
Давайте пройдём первую итерацию. Сложение рассчитывается по модулю 2^32:
Шаг 7. Изменяем окончательные значения
Шаг 8. Получаем финальный хеш
И последний важный шаг — собираем всё вместе.
Готово! Мы выполнили каждый шаг SHA-2 (SHA-256) (без некоторых итераций).
Алгоритм SHA-2 в виде псевдокода
Если вы хотите посмотреть на все шаги, которые мы только что сделали, в виде псевдокода, то вот пример:
Расшифровка sha256 онлайн — декордер хешей (decoder online)
Нередко бывает нужно узнать пароль, имея на руках только хеш. Для перебора вариантов можно использовать свой компьютер, но гораздо быстрее воспользоваться уже существующей базой данных. Даже в общедоступных базах содержатся десятки миллионов пар hash — пароль, и поиск по ним через облачный сервис занимает считаные секунды.
В мире существует несколько зеттабайт цифровых данных, но далеко не вся эта информация уникальна: повторы разбросаны по миллиардам носителей и серверов. Независимо от типа данных, для работы с ними требуется решать одни и те же принципиальные задачи. Это снижение избыточности за счет частичного устранения повторов (дедупликация), проверка целостности, инкрементное создание резервных копий и авторизация пользователей. Конечно, последний аспект интересует нас больше всего, однако все эти технические приемы базируются на общих методах обработки данных с использованием хеширования. Существуют облачные сервисы, которые позволяют использовать эту процедуру быстрее — с хорошо известными целями.
На первый взгляд кажется странным, что в разных задачах применяется общая процедура вычисления и сравнения контрольных сумм или хешей — битовых последовательностей фиксированной длины. Однако этот метод действительно универсален. Контрольные суммы служат своеобразными цифровыми отпечатками файлов, ключей и других данных, называемых в криптографии messages — сообщения. Hashes (или дайджесты, от англ. digest) позволяют сравнивать их между собой, быстро обнаруживать любые изменения и обезопасить проверку доступа. Например, с помощью хешей можно проверять соответствие введенных паролей, не передавая их в открытом виде.
Математически этот процесс выполняется одним из алгоритмов хеширования — итерационного преобразования блоков данных, на которые разбивается исходное сообщение. На входе может быть что угодно — от короткого пароля до огромной базы данных. Все блоки циклично дописываются нулями или урезаются до заданной длины до тех пор, пока не будет получен дайджест фиксированного размера.
Обычно хеши записываются в шестнадцатеричном виде. Так их гораздо удобнее сравнивать на вид, а запись получается в четыре раза короче двоичной. Самые короткие хеши получаются при использовании Adler-32, CRC32 и других алгоритмов с длиной дайджеста 32 бита. Самые длинные — у SHA-512. Кроме них, существует с десяток других популярных hash-функций, и большинство из них способно рассчитывать дайджесты промежуточной длины: 160, 224, 256 и 384 бита. Попытки создать функцию с увеличенной длиной хеша продолжаются, поскольку чем длиннее дайджест, тем больше разных вариантов может сгенерировать hash-функция.
Предельный объем исходных данных, который может обработать hash-функция, определяется формой их представления в алгоритме. Обычно они записываются как целое 64-битное число, поэтому типичный лимит составляет 264 бит минус единица, или два эксабайта. Такое ограничение пока не имеет практической значимости даже для очень крупных дата-центров.
Дешифратор sha256
Уникальность хеша — одно из его ключевых свойств, определяющее криптостойкость системы шифрования. Дело в том, что число вариантов возможных паролей теоретически бесконечно, а вот число hash всегда конечное, хоть и очень большое. Дайджесты любой хеш-функции будут уникальны лишь до определенной степени. Степени двойки, если быть точным. К примеру, алгоритм CRC32 дает множество всего из 232 вариантов, и в нем трудно избежать повторений. Большинство других функций использует дайджесты длиной 128 или 160 бит, что резко увеличивает число уникальных хешей — до 2’28 и 2160 соответственно.
Совпадение хешей от разных исходных данных (в том числе паролей) называют коллизией. Она может быть случайной (встречается на больших объемах данных) или псевдослучайной — используемой в целях атаки. На эффекте коллизии основан взлом разных криптографических систем — в частности, протоколов авторизации. Все они сначала считают hash от введенного пароля или ключа, а затем передают этот дайджест для сравнения, часто примешивая к нему на каком-то этапе порцию псевдослучайных данных, или используют дополнительные алгоритмы шифрования для усиления защиты. Сами пароли нигде не сохраняются: передаются и сравниваются только их дайджесты. Здесь важно то, что после хеширования абсолютно любых паролей одной и той же функцией на выходе всегда получится дайджест одинакового и заранее известного размера.
Псевдореверс
Провести обратное преобразование и получить пароль непосредственно из хеша невозможно в принципе, даже если очистить его от соли, поскольку хеширование — это однонаправленная функция. Глядя на полученный дайджест, нельзя понять ни объем исходных данных, ни их тип. Однако можно решить сходную задачу: сгенерировать пароль с таким же hash. Из-за эффекта коллизии задача упрощается: возможно, ты никогда не узнаешь настоящий пароль, но найдешь совершенно другой, дающий после хеширования по этому же алгоритму требуемый дайджест.
Методы оптимизации расчетов появляются буквально каждый год. Ими занимаются команды HashClash, Distributed Rainbow Table Generator и других международных проектов криптографических вычислений. В результате на каждое короткое сочетание печатных символов или вариант из списка типичных паролей hashes уже вычислены. Их можно быстро сравнить с перехваченным, пока не найдется полное совпадение.
Раньше на это требовались недели или месяцы процессорного времени, которые в последние годы удалось сократить до нескольких часов благодаря многоядерным процессорам и перебору в программах с поддержкой CUDA и OpenCL. Админы нагружают расчетами таблиц серверы во время простоя, а кто-то арендует виртуальный кластер в Amazon ЕС2.
Поиск хеша гуглом
Далеко не все сервисы готовы предоставить услугу поиска паролей по хешам бесплатно. Где-то требуется регистрация и крутится тонна рекламы, а на многих сайтах можно встретить и объявления об услуге платного взлома. Часть из них действительно использует мощные кластеры и загружает их, ставя присланные хеши в очередь заданий, но есть и обычные пройдохи. Они выполняют бесплатный поиск за деньги, пользуясь неосведомленностью потенциальных клиентов.
Вместо того чтобы рекламировать здесь честные сервисы, предлагается использовать другой подход — находить пары hash — пароль в популярных поисковых системах. Их роботы-пауки ежедневно прочесывают веб и собирают новые данные, среди которых есть и свежие записи из радужных таблиц.
Поэтому для начала просто напишите хеш в поисковой строке Google. Если ему соответствует какой-то словарный пароль, то он (как правило) отобразится среди результатов поисковой выдачи уже на первой странице. Единичные hashes можно погуглить вручную, а большие списки будет удобнее обработать с помощью скрипта BozoCrack.
Декодирование хешей sha256 — как расшифровать (декодировать) хеш sha256 онлайн
Для дешифровки хешей sha256 используются различные сервисы.
Популярные алгоритмы хеширования работают настолько быстро, что к настоящему моменту удалось составить пары hash — пароль почти для всех возможных вариантов функций с коротким дайджестом. Параллельно у функций с длиной hash от 128 бит находят недостатки в самом алгоритме или его конкретных реализациях, что сильно упрощает взлом.
В девяностых годах крайне популярным стал алгоритм MD5, написанный Рональдом Ривестом. Он стал широко применяться при авторизации пользователей на сайтах и при подключении к серверам клиентских приложений. Однако его дальнейшее изучение показало, что алгоритм недостаточно надежен. В частности, он уязвим к атакам по типу псевдослучайной коллизии. Иными словами, возможно преднамеренное создание другой последовательности данных, хеш которой будет в точности соответствовать известному.
Поскольку дайджесты сообщений широко применяются в криптографии, на практике использование алгоритма MD5 сегодня приводит к серьезным проблемам. Например, с помощью такой атаки можно подделать цифровой сертификат х.509. В том числе возможна подделка сертификата SSL, позволяющая злоумышленнику выдавать свой фейк за доверенный корневой сертификат (СА). Более того, в большинстве наборов доверенных сертификатов легко найти те, которые по-прежнему используют алгоритм MD5 для подписи. Поэтому существует уязвимость всей инфраструктуры открытых ключей (PKI) для таких атак.
Изнурительную атаку перебором устраивать придется только в случае действительно сложных ключей (состоящих из большого набора случайных символов) и для хеш-функций с дайджестами большой длины (от 160 бит), у которых пока не нашли серьезных недостатков. Огромная масса коротких и словарных паролей сегодня вскрывается за пару секунд с помощью онлайн-сервисов.
Расшифровка хеша онлайн — сервисы
HashKiller
Hash Killer не дружит с кириллицей, но знает кириллические ключи.
«Убийца хешей» нашел три пароля из пяти за пол секунды.
Крэк-станция
Поддерживает работу с хешами практически всех реально используемых типов. LM, NTLM, MySQL 4.1+, MD2/4/5 + MD5-half, SHA-160/224/256/384/512, ripeMD160 и Whirlpool. За один раз можно загрузить для анализа до десяти хешей. Поиск проводится по индексированной базе. Для MD5 ее объем составляет 15 миллионов пар (около 190 Гб) и еще примерно по 1,5 миллиона для каждой другой хеш-функции.
По уверениям создателей в базу включены из Англоязычной версии Википедии и большинство популярных паролей, собранных из общедоступных списков. Среди них есть и хитрые варианты со сменой регистра, литспиком, повтором символов, зеркалированием и прочими трюками. Однако случайные пароли даже из пяти символов становятся проблемой — в моем тесте половина из них не была найдена даже по LM-hash.
CloudCracker
Бесплатный сервис мгновенного поиска паролей по hash MD5 и SHA-1. Тип дайджеста определяется автоматически по его длине.
Пока CloudCracker находит соответствия только hashes некоторых английских слов и распространенных ключей, вроде admin123. Даже короткие пароли из случайных наборов символов типа D358 он не восстанавливает по дайджесту MD5.
MD5Decode
Сервис MD5Decode содержит базу ключей, для которых известны значения MD5. Он также показывает все остальные хеши, соответствующие найденному паролю: MD2, MD4, SHA (160-512), RIPEMD (128-320), Whirlpool-128, Tiger (128-192 в 3-4 прохода), Snefru-256, GOST, Adler-32, CRC32, CRC32b, FNV (132/164), JOAAT 8, HAVAL (128-256 в 3-5 проходов).
Если число проходов не указано, то функция вычисляет хеш в один проход. Собственного поиска на сайте пока нет, но пароль или его hash можно написать прямо в адресной строке браузера, добавив его после адреса сайта и префикса /encrypt/.
MD5Decrypt
Проект с говорящим названием MD5Decrypt тоже позволяет найти соответствие только между паролем и его хешем MD5. Зато у него есть собственная база из 10 миллионов пар и автоматический поиск по 23 базам дружественных сайтов. Также на сайте имеется hash-калькулятор для расчета дайджестов от введенного сообщения по алгоритмам MD4, MD5 и SHA-1.
MD5Decrypt находит составные словарные пароли, но хеши на анализ принимает только по одному.
MD5Lab
Еще один сайт, MD5Lab получил хостинг у CloudFare в Сан-Франциско. Искать по нему пока неудобно, хотя база растет довольно быстро. Просто возьмите на заметку.
Строго говоря, к hash-функциям в криптографии предъявляются более высокие требования, чем к контрольным суммам на основе циклического кода. Однако эти понятия на практике часто используют как синонимы.
Универсальный подход дехешера sha256
Среди десятка hash-функций наиболее популярны MD5 и SHA-1, но точно такой же подход применим и к другим алгоритмам. К примеру, файл реестра SAM в ОС семейства Windows по умолчанию хранит два дайджеста каждого пароля: LM-хеш (устаревший тип на основе алгоритма DES) и NT-хеш (создается путем преобразования юникодной записи пароля по алгоритму MD4). Длина обоих хешей одинакова (128 бит), но стойкость LM значительно ниже из-за множества упрощений алгоритма.
Постепенно оба типа хешей вытесняются более надежными вариантами авторизации, но многие эту старую схему используют в исходном виде до сих пор. Скопировав файл SAM и расшифровав его системным ключом из файла SYSTEM, атакующий получает список локальных учетных записей и сохраненных для них контрольных значений — хешей.
Далее взломщик может найти последовательность символов, которая соответствует хешу администратора. Так он получит полный доступ к ОС и оставит в ней меньше следов, чем при грубом взломе с помощью банального сброса ключа. Напоминаю, что из-за эффекта коллизии подходящий пароль не обязательно будет таким же, как у реального владельца компьютера, но для Windows разницы между ними не будет вовсе. Как пела группа Bad Religion, «Cause to you I’m just a number and a clever screen name».
Аналогичная проблема существует и в других системах авторизации. Например, в протоколах WPA/WPA2, широко используемых при создании защищенного подключения по Wi-Fi. При соединении между беспроводным устройством и точкой доступа происходит стандартный обмен начальными данными, включающими в себя handshake. Во время «рукопожатия» пароль в открытом виде не передается, но в эфир отправляется ключ, основанный на хеш-функции. Нужные пакеты можно перехватить, переключив с помощью модифицированного драйвера адаптер Wi-Fi в режим мониторинга. Более того, в ряде случаев можно не ждать момента следующего подключения, а инициализировать эту процедуру принудительно, отправив широковещательный запрос deauth всем подключенным клиентам. Уже в следующую секунду они попытаются восстановить связь и начнут серию «рукопожатий».
Сохранив файл или файлы с хендшейком, можно выделить из них hash пароля и либо узнать сам пароль, либо найти какой-то другой, который точка доступа примет точно так же. Многие онлайн-сервисы предлагают провести анализ не только чистого хеша, но и файла с записанным хендшейком. Обычно требуется указать файл рсар и SSID выбранной точки доступа, так как ее идентификатор используется при формировании ключа PSK.
Decrypt MD5, SHA1, MySQL, NTLM, SHA256, SHA512 hashes
Enter your hashes here and we will attempt to decrypt them for free online.
Hashes.com is a hash lookup service. This allows you to input an MD5, SHA-1, Vbulletin, Invision Power Board, MyBB, Bcrypt, WordPress, SHA-256, SHA-512, MYSQL5 etc hash and search for its corresponding plaintext («found») in our database of already-cracked hashes.
We have been building our hash database since August 2007.
The MD5 message-digest algorithm is a widely used hash function producing a 128-bit hash value. Although MD5 was initially designed to be used as a cryptographic hash function, it has been found to suffer from extensive vulnerabilities. It can still be used as a checksum to verify data integrity, but only against unintentional corruption. It remains suitable for other non-cryptographic purposes, for example for determining the partition for a particular key in a partitioned database. The weaknesses of MD5 have been exploited in the field, most infamously by the Flame malware in 2012. The CMU Software Engineering Institute considers MD5 essentially cryptographically broken and unsuitable for further use. MD5 Decrypt.
In cryptography, SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash function which takes an input and produces a 160-bit (20-byte) hash value known as a message digest – typically rendered as a hexadecimal number, 40 digits long. It was designed by the United States National Security Agency, and is a U.S. Federal Information Processing Standard. Since 2005 SHA-1 has not been considered secure against well-funded opponents, and since 2010 many organizations have recommended its replacement by SHA-2 or SHA-3. Microsoft, Google, Apple and Mozilla have all announced that their respective browsers will stop accepting SHA-1 SSL certificates by 2017. SHA1 Decrypt.
The MySQL5 hashing algorithm implements a double binary SHA-1 hashing algorithm on a users password. MySQL Decrypt.
NT (New Technology) LAN Manager (NTLM) is a suite of Microsoft security protocols that provides authentication, integrity, and confidentiality to users. NTLM is the successor to the authentication protocol in Microsoft LAN Manager (LANMAN), an older Microsoft product. The NTLM protocol suite is implemented in a Security Support Provider, which combines the LAN Manager authentication protocol, NTLMv1, NTLMv2 and NTLM2 Session protocols in a single package. Whether these protocols are used or can be used on a system is governed by Group Policy settings, for which different versions of Windows have different default settings. NTLM passwords are considered weak because they can be brute-forced very easily with modern hardware. NTLM Decrypt.
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA). They are built using the Merkle–Damgård structure, from a one-way compression function itself built using the Davies–Meyer structure from a (classified) specialized block cipher. SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256. SHA256 Decrypt.
«Привет, мир»: разбираем каждый шаг хэш-алгоритма SHA-256
Что такое хэш-функция?
Три основных цели хэш-функций:
SHA-256 «Привет, мир»
Шаг 1 — Предварительная работа
Преобразуем «Привет, мир» в двоичный код:
Дополните код нулями, пока данные не станут равны 512 бит, минус 64 бита (в результате 448 бит):
Добавьте 64 бита в конец в виде целого числа с порядком байтов от старшего к младшему (big-endian), представляющего длину входного сообщения в двоичном формате. В нашем случае это 88, или «1011000».
Теперь у нас есть ввод, который будет делиться на 512 без остатка.
Шаг 2 — Инициализируйте значения хэша (h)
Теперь мы создаем 8 хэш-значений. Это жестко запрограммированные константы, которые представляют собой первые 32 бита дробных частей квадратных корней из первых восьми простых чисел: 2, 3, 5, 7, 11, 13, 17, 19.
Шаг 3 — Инициализация округленных констант (k)
Как и в предыдущем шаге, мы создадим еще несколько констант. На этот раз их будет 64. Каждое значение (0—63) представляет собой первые 32 бита дробных частей кубических корней первых 64 простых чисел (2—311).
Шаг 4 — Цикл фрагментов
Следующие шаги будут выполняться для каждого 512-битного «фрагмента» из наших входных данных. Поскольку фаза «Привет, мир» короткая, у нас есть только один фрагмент. В каждой итерации цикла мы будем изменять хэш-значения h0-h7, что приведет нас к конечному результату.
Шаг 5 — Созданием расписание сообщений (w)
Скопируйте входные данные из шага 1 в новый массив, где каждая запись представляет собой 32-битное слово:
Добавьте еще 48 слов, инициализированных нулем, чтобы у нас получился массив w [0… 63]
Измените обнуленные индексы в конце массива, используя следующий алгоритм:
Для i из w[16…63]:
В расписании сообщений осталось 64 слова (w):
Шаг 6 — Сжатие
Инициализируйте переменные a, b, c, d, e, f, g, h и установите их равными текущим значениям хэш-функции соответственно h0, h1, h2, h3, h4, h5, h6, h7.
Запустите цикл сжатия, который изменит значения a… h. Выглядит он следующим образом:
Все вычисления выполняются еще 63 раза, меняя переменные a-h. К счастью, мы не делаем это вручную. В итоге мы получили:
Шаг 7 — Измените окончательные значения
После цикла сжатия, во время цикла фрагментов, мы изменяем хеш-значения, добавляя к ним соответствующие переменные a-h. Как и ранее, все сложение производится по модулю 2 ^ 32:
Шаг 8 — Финальный хэш
Наконец, соединяем все вместе.
Мы прошли каждый шаг (за исключением нескольких итераций) SHA-256 в подробностях. Если хотите увидеть весь путь, что мы совершили, в форме псевдокода, заходите на WikiPedia.








