двоичный код в текст
Преобразуйте двоичный текст в текстовый / английский или ASCII, используя prepostseoБинарный переводчик. Введите двоичные числа (например, 01000101 01111000 01100001 01101101 01110000 01101100 01100101) и нажмите кнопку Преобразовать
Двоичный переводчик
Двоичная система счисления
Система двоичного декодера основана на числе 2 (основание). Он состоит только из двух чисел как системы счисления base-2: 0 и 1.
Хотя бинарная система применялась в различных целях в древнем Египте, Китае и Индии, она стала языком электроники и компьютеров современного мира. Это наиболее эффективная система для обнаружения выключенного (0) и включенного (1) состояния электрического сигнала. Это также основа двоичного кода в текст, который используется на компьютерах для составления данных. Даже цифровой текст, который вы сейчас читаете, состоит из двоичных чисел. Но вы можете прочитать этот текст, потому что мы расшифровали двоичный код перевод файл, используя двоичный код слова.
Двоичное число легче прочитать, чем выглядит: это позиционная система; поэтому каждая цифра двоичного числа возводится в степень 2, начиная с 20 справа. Каждая двоичная цифра в преобразователе двоичного кода относится к 1 биту.
Что такое ASCII?
Бинарный в ASCII
Первоначально основанный на английском алфавите, ASCII кодирует 128 указанных семибитных целочисленных символов. Можно печатать 95 кодированных символов, включая цифры от 0 до 9, строчные буквы от a до z, прописные буквы от A до Z и символы пунктуации. Кроме того, 33 непечатных контрольных кода, полученных с помощью машин Teletype, были включены в исходную спецификацию ASCII; большинство из них в настоящее время устарели, хотя некоторые все еще широко используются, такие как возврат каретки, перевод строки и коды табуляции.
Использование ASCII
Как уже упоминалось выше, используя ASCII, вы можете перевести компьютерный текст в человеческий текст. Проще говоря, это переводчик с бинарного на английский. Все компьютеры получают сообщения в двоичном, 0 и 1 серии. Тем не менее, так же, как английский и испанский могут использовать один и тот же алфавит, но для многих похожих слов у них совершенно разные слова, у компьютеров также есть своя языковая версия. ASCII используется как метод, который позволяет всем компьютерам обмениваться документами и файлами на одном языке.
ASCII важен, потому что при разработке компьютерам был дан общий язык.
До декабря 2007 года, когда кодировка UTF-8 превосходила ее, ASCII была наиболее распространенной кодировкой символов во Всемирной паутине; UTF-8 обратно совместим с ASCII.
UTF-8 (Юникод)
Unicode и универсальный набор символов (UCS) ISO / IEC 10646 имеют гораздо более широкий диапазон символов, и их различные формы кодирования начали быстро заменять ISO / IEC 8859 и ASCII во многих ситуациях. Хотя ASCII ограничен 128 символами, Unicode и UCS поддерживают большее количество символов посредством разделения уникальных концепций идентификации (с использованием натуральных чисел, называемых кодовыми точками) и кодирования (до двоичных форматов UTF-8, UTF-16 и UTF-32-битных). ).
Разница между ASCII и UTF-8
ASCII был включен как первые 128 символов в набор символов Unicode (1991), поэтому 7-разрядные символы ASCII в обоих наборах имеют одинаковые числовые коды. Это позволяет UTF-8 быть совместимым с 7-битным ASCII, поскольку файл UTF-8 с только символами ASCII идентичен файлу ASCII с той же последовательностью символов. Что еще более важно, прямая совместимость обеспечивается, поскольку программное обеспечение, которое распознает только 7-битные символы ASCII как специальные и не изменяет байты с самым высоким установленным битом (как это часто делается для поддержки 8-битных расширений ASCII, таких как ISO-8859-1), будет сохранить неизмененные данные UTF-8.
Приложения переводчика двоичного кода
• Наиболее распространенное применение для этой системы счисления можно увидеть в компьютерных технологиях. В конце концов, основой всего компьютерного языка и программирования является двузначная система счисления, используемая в цифровом кодировании.
• Это то, что составляет процесс цифрового кодирования, беря данные и затем изображая их с ограниченными битами информации. Ограниченная информация состоит из нулей и единиц двоичной системы. Изображения на экране вашего компьютера являются примером этого. Для кодирования этих изображений для каждого пикселя используется двоичная строка.
• Если на экране используется 16-битный код, каждому пикселю будут даны инструкции, какой цвет отображать на основе того, какие биты равны 0 и 1. В результате получается более 65 000 цветов, представленных 2 ^ 16. В дополнение к этому вы найдете применение двоичной системы счисления в математической ветви, известной как булева алгебра.
• Ценности логики и истины относятся к этой области математики. В этом приложении заявлениям присваивается 0 или 1 в зависимости от того, являются ли они истинными или ложными. Вы можете попробовать преобразование двоичного в текстовое, десятичное в двоичное, двоичное в десятичное преобразование, если вы ищете инструмент, который помогает в этом приложении.
Преимущество двоичной системы счисления
Система двоичных чисел полезна для ряда вещей. Например, компьютер щелкает переключателями для добавления чисел. Вы можете стимулировать добавление компьютера, добавляя двоичные числа в систему. В настоящее время есть две основные причины использования этой компьютерной системы счисления. Во-первых, это может обеспечить надежность диапазона безопасности. Вторично и самое главное, это помогает минимизировать необходимые схемы. Это уменьшает необходимое пространство, потребляемую энергию и расходы.
Интересный факт
Вы можете кодировать или переводить двоичные сообщения, написанные двоичными числами. Например,
(01101001) (01101100011011110111011001100101) (011110010110111101110101) является декодированным сообщением. Когда вы скопируете и вставите эти цифры в наш бинарный переводчик, вы получите следующий текст на английском языке:
(01101001) (01101100011011110111011001100101) (011110010110111101110101) = Я тебя люблю
Двоичный код в текст и обратно
Онлайн конвертер для перевода текста в бинарный код и наоборот. Поможет выполнить кодирование двоичным кодом записав буквы, цифры и символы в бинарный код. Произведёт декодирование двоичного кода в слова, буквы, цифры и символы. Кодирование слов двоичным кодом. Зашифровка и расшифровка производится по стандартам кодировки таблиц ASCII или UTF-8 (Юникод) (UTF-16).
Будьте внимательны, если переводить символы в двоичную систему с помощью онлайн конвертера, то первый нулевой ведущий бит может быть отброшен, что может сбить с толку.
Смотрите также
11010000 10011111 11010001 10000000 11010000 10111000 11010000 10110010 11010000 10110101 11010001 10000010 00100000 11010000 10011100 11010000 10111000 11010001 10000000
11010000 10111111 11010000 10111000 11010000 10111111 11010000 10111000 00100000 11010000 10111010 11010000 10111110 11010001 10000000 11010000 10111110 11010001 10000010 11010000 10111010 11010000 10111000 11010000 10111001 00100000 11010000 10111010 11010000 10110000 11010001 10000000 11010000 10111011
11010000 10111000 11010000 10110100 11010000 10111000 00100000 11010001 10000011 11010001 10000000 11010000 10111110 11010000 10111010 11010000 10111000 00100000 11010000 10110100 11010000 10110101 11010000 10111011 11010000 10110000 11010000 10111001 00100000 11010001 10000111 11010000 10110101 00100000 11010001 10000001 11010000 10111100 11010000 10111110 11010001 10000010 11010001 10000000 11010000 10111000 11010001 10001000 11010001 10001100 00111111
А как мне загрузить на компьютер полученный бинарный файл? Смотреть на него глазами что ли? ))
Перевод текста в цифровой код.
Давайте разберемся как же все таки переводить тексты в цифровой код? Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.
Кодирование текста.
По теории ЭВМ любой текст состоит из отдельных символов. К этим символам относятся: буквы, цифры, строчные знаки препинания, специальные символы ( «»,№, (), и т.д.), к ним, так же, относятся пробелы между словами.
Необходимый багаж знаний. Множество символов, при помощи которых записываю текст, называется АЛФАВИТОМ.
Число взятых в алфавите символов, представляет его мощность.
Количество информации можно определить по формуле : N = 2b
Алфавит, в котором будет 256 может вместить в себя практически все нужные символы. Такие алфавиты называют ДОСТАТОЧНЫМИ.
Если взять алфавит мощностью 256, и иметь в виду что 256 = 28
Если перевести каждый символ в двоичный код, то этот код компьютерного текста будет занимать 1 байт.
Как текстовая информация может выглядеть в памяти компьютера?
Любой текст набирают на клавиатуре, на клавишах клавиатуры, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111.
Поскольку, байт – это самая маленькая адресуемая частица памяти, и память обращена к каждому символу отдельно – удобство такого кодирование очевидно. Однако, 256 символов – это очень удобное количество для любой символьной информации.
Естественно, встал вопрос: Какой конкретно восьми разрядный код принадлежит каждому символу? И как осуществить перевод текста в цифровой код?
Этот процесс условный, и мы вправе придумать различные способы для кодировки символов. Каждый символ алфавита имеет свой номер от 0 до 255. И каждому номеру присвоен код от 00000000 до 11111111.
Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для различных типов ЭВМ используют разные таблицы для кодировки.
ASCII(или Аски), стала международным стандартом для персональных компьютеров. Таблица имеет две части.
Таблица кода символов ASCII.
Первая половина для таблицы ASCII. (Именно первая половина, стала стандартом.)
Соблюдение лексикографического порядка, то есть, в таблице буквы (Строчные и прописные) указаны в строгом алфавитном порядке, а цифры по возрастанию, называют принципом последовального кодирования алфавита.
Для русского алфавита тоже соблюдают принцип последовательного кодирования.
Сейчас, в наше время используют целых пять систем кодировок русского алфавита(КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид.
Одним из первых стандартов для кодирования русского алфавита на персональных компьютерах считают КОИ8(«Код обмена информацией, 8-битный»). Данная кодировка использовалась в середине семидесятых годов на серии компьютеров ЕС ЭВМ, а со средины восьмидесятых, её начинают использовать в первых переведенных на русский язык операционных системах UNIX.
С начала девяностых годов, так называемого, времени, когда господствовала операционная система MS DOS, появляется система кодирования CP866 («CP» означает «Code Page», «кодовая страница»).
Гигант компьютерных фирм APPLE, со своей инновационной системой, под упралением которой они и работали (Mac OS), начинают использовать собственную систему для кодирования алфавита МАС.
Международная организация стандартизации (International Standards Organization, ISO)назначает стандартом для русского языка еще одну систему для кодирования алфавита, которая называется ISO 8859-5.
А самая распространенная, в наши дни, система для кодирования алфавита, придумана в Microsoft Windows, и называется CP1251.
С второй половины девяностых годов, была решена проблема стандарта перевода текста в цифровой код для русского языка и не только, введением в стандарт системы, под названием Unicode. Она представлена шестнадцатиразрядной кодировкой, это означает, что на каждый символ отводится ровно по два байта оперативной памяти. Само собой, при такой кодировке, затраты памяти увеличены в два раза. Однако, такая кодовая система позволяет переводить в электронный код до 65536 символов.
Специфика стандартной системы Unicode, является включением в себя абсолютно любого алфавита, будь он существующим, вымершим, выдуманным. В конечном счете, абсолютно любой алфавит, в добавок к этом, система Unicode, включает в себя уйму математических, химических, музыкальных и общих символов.
Давайте с помощью таблицы ASCII посмотрим, как может выглядеть слово в памяти вашего компьютера.
Очень часто случается так, что ваш текст, который написан буквами из русского алфавита, не читается, это обусловлено различием систем кодирования алфавита на компьютерах. Это очень распространенная проблема, которая довольно часто обнаруживается.
Бинарный переводчик текста
Введите двоичные числа с любым префиксом / постфиксом / разделителем и нажмите кнопку Конвертировать
(например: 01000101 01111000 01100001 01101101 01110000 01101100 01100101):
Кодировка текста ASCII использует фиксированный 1 байт для каждого символа.
Кодировка текста UTF-8 использует переменное количество байтов для каждого символа. Для этого требуется разделитель между каждым двоичным числом.
Как преобразовать двоичный файл в текст
Преобразуйте двоичный код ASCII в текст:
пример
Преобразовать двоичный код ASCII «01010000 01101100 01100001 01101110 01110100 00100000 01110100 01110010 01100101 01100101 01110011» в текст:
Используйте таблицу ASCII, чтобы получить символ из кода ASCII.
01010000 2 = 2 6 +2 4 = 64 + 16 = 80 = «P»
01101100 2 = 2 6 +2 5 +2 3 +2 2 = 64 + 32 + 8 + 4 = 108 = «l»
01100001 2 = 2 6 +2 5 +2 0 = 64 + 32 + 1 = 97 = «а»
Для всех двоичных байтов вы должны получить текст:
Как преобразовать двоичный файл в текст?
Как использовать преобразователь двоичного в текст?
Как преобразовать двоичный код в английский?
Как преобразовать двоичный код 01000001 в текст?
Используйте таблицу ASCII:
01000001 = 2 ^ 6 + 2 ^ 0 = 64 + 1 = 65 = символ ‘A’
Как преобразовать двоичный код 00110000 в текст?
Используйте таблицу ASCII:
00110000 = 2 ^ 5 + 2 ^ 4 = 2 ^ 5 + 2 ^ 4 = 32 + 16 = 48 = символ ‘0’
Двоичное счисление на пальцах
Все знают, что компьютеры состоят из единиц и нулей. Но что это значит на самом деле?
Если у вас в школе была информатика, не исключено, что там было упражнение на перевод обычных чисел в двоичную систему и обратно. Маловероятно, что кто-то вам объяснял практический смысл этой процедуры и откуда вообще берётся двоичное счисление. Давайте закроем этот разрыв.
Эта статья не имеет практической ценности — читайте её просто ради интереса к окружающему миру. Если нужны практические статьи, заходите в наш раздел «Где-то баг», там каждая статья — это практически применимый проект.
Отличный план
Чтобы объяснить всё это, нам понадобится несколько тезисов:
Система записи — это шифр
Если у нас есть девять коров, мы можем записать их как 🐄🐄🐄🐄🐄🐄🐄🐄🐄 или как 9 × 🐄.
Почему 9 означает «девять»? И почему вообще есть такое слово? Почему такое количество мы называем этим словом? Вопрос философский, и короткий ответ — нам нужно одинаково называть числа, чтобы друг друга понимать. Слово «девять», цифра 9, а также остальные слова — это шифр, который мы выучили в школе, чтобы друг с другом общаться.
Допустим, к нашему стаду прибиваются еще 🐄🐄🐄. Теперь у нас 🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄 — двенадцать коров, 12. Почему мы знаем, что 12 — это «двенадцать»? Потому что мы договорились так шифровать числа.
Нам очень легко расшифровывать записи типа 12, 1920, 100 500 и т. д. — мы к ним привыкли, мы учили это в школе. Но это шифр. 12 × 🐄 — это не то же самое, что 🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄🐄. Это некая абстракция, которой мы пользуемся, чтобы упростить себе счёт.
Мы привыкли шифровать десятью знаками
У нас есть знаки 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 — всего десять знаков. Этим числом знаков мы шифруем количество единиц, десятков, сотен, тысяч и так далее.
Мы договорились, что нам важен порядок записи числа. Мы знаем, что самый правый знак в записи означает число единиц, следующий знак (влево) означает число десятков, потом сотен и далее.
Например, перед нами число 19 547. Мы знаем, что в нём есть:
Если приглядеться, то каждый следующий разряд числа показывает следующую степень десятки:
Нам удобно считать степенями десятки, потому что у нас по десять пальцев и мы с раннего детства научились считать до десяти.
Система записи — это условность
Представим бредовую ситуацию: у нас не 10 пальцев, а 6. И в школе нас учили считать не десятками, а шестёрками. И вместо привычных цифр мы бы использовали знаки ØABCDE. Ø — это по-нашему ноль, A — 1, B — 2, E — 5.
Вот как выглядели бы привычные нам цифры в этой бредовой системе счисления:
| 0 — Ø 1 — A 2 — B 3 — C 4 — D 5 — E | 6 — AØ 7 — AA 8 — AB 9 — AC 10 — AD 11 — AE | 12 — BØ 13 — BA 14 — BB 15 — BC 16 — BD 17 — BE | 18 — CØ 19 — CA 20 — CB 21 — CC 22 — CD 23 — CE | 24 — DØ 25 — DA 26 — DB 27 — DC 28 — DD 29 — DE | 30 — EØ 31 — EA 32 — EB 33 — EC 34 — ED 35 — EE | 36 — AØØ 37 — AØA 38 — AØB 39 — AØC 40 — AØD 41 — AØE |
В этой системе мы считаем степенями шестёрки. Число ABADØ можно было бы перевести в привычную нам десятичную запись вот так:
A × 6 4 = 1 × 1296 = 1296
B × 6 3 = 2 × 216 = 432
1296 + 432 + 36 + 24 + 0 = 1788. В нашей десятичной системе это 1788, а у людей из параллельной вселенной это ABADØ, и это равноценно.
Выглядит бредово, но попробуйте вообразить, что у нас в сумме всего шесть пальцев. Каждый столбик — как раз шесть чисел. Очень легко считать в уме. Если бы нас с детства учили считать шестёрками, мы бы спокойно выучили этот способ и без проблем всё считали. А счёт десятками вызывал бы у нас искреннее недоумение: «Что за бред, считать числом AD? Гораздо удобнее считать от Ø до E!»
То, как мы шифруем и записываем числа, — это следствие многовековой традиции и физиологии. Вселенной, космосу, природе и стадам коров глубоко безразлично, что мы считаем степенями десятки. Природа не укладывается в эту нашу систему счёта.
Двоичная система (тоже нормальная)
Внутри компьютера работают транзисторы. У них нет знаков 0, 1, 2, 3… 9. Транзисторы могут быть только включёнными и выключенными — обозначим их 💡 и ⚫.
Мы можем научить компьютер шифровать наши числа этими транзисторами так же, как шестипалые люди шифровали наши числа буквами. Только у нас будет не 6 букв, а всего две: 💡 и ⚫. И выходит, что в каждом разряде будет стоять не число десяток в разной степени, не число шестёрок в разной степени, а число… двоек в разной степени. И так как у нас всего два знака, то получается, что мы можем обозначить либо наличие двойки в какой-то степени, либо отсутствие:
9 — 💡 ⚫⚫ 💡
10 — 💡 ⚫ 💡 ⚫
11 — 💡 ⚫ 💡 💡
12 — 💡 💡 ⚫⚫
13 — 💡 💡 ⚫ 💡
14 — 💡 💡 💡 ⚫
15 — 💡 💡 💡 💡
17 — 💡 ⚫⚫⚫ 💡
18 — 💡 ⚫⚫ 💡 ⚫
19 — 💡 ⚫⚫ 💡 💡
20 — 💡 ⚫ 💡 ⚫⚫
21 — 💡 ⚫ 💡 ⚫ 💡
21 — 💡 ⚫ 💡 💡 ⚫
23 — 💡 ⚫ 💡 💡 💡
24 — 💡 💡 ⚫⚫⚫
25 — 💡 💡 ⚫⚫ 💡
26 — 💡 💡 ⚫ 💡 ⚫
27 — 💡 💡 ⚫ 💡 💡
28 — 💡 💡 💡 ⚫⚫
29 — 💡 💡 💡 ⚫ 💡
30 — 💡 💡 💡 💡 ⚫
31 — 💡 💡 💡 💡 💡
33 — 💡 ⚫⚫⚫⚫ 💡
34 — 💡 ⚫⚫⚫ 💡 ⚫
35 — 💡 ⚫⚫⚫ 💡 💡
36 — 💡 ⚫⚫ 💡 ⚫⚫
37 — 💡 ⚫⚫ 💡 ⚫ 💡
38 — 💡 ⚫⚫ 💡 💡 ⚫
39 — 💡 ⚫⚫ 💡 💡 💡
40 — 💡 ⚫ 💡 ⚫⚫⚫
41 — 💡 ⚫ 💡 ⚫⚫ 💡
42 — 💡 ⚫ 💡 ⚫ 💡 ⚫
43 — 💡 ⚫ 💡 ⚫ 💡 💡
44 — 💡 ⚫ 💡 💡 ⚫⚫
45 — 💡⚫💡💡⚫💡
46 — 💡⚫💡💡💡⚫
47 — 💡⚫💡💡💡💡
48 — 💡💡⚫⚫⚫⚫
49 — 💡💡⚫⚫⚫💡
50 — 💡💡⚫⚫💡⚫
51 — 💡💡⚫⚫💡💡
52 — 💡💡⚫💡⚫⚫
53 — 💡💡⚫💡⚫💡
54 — 💡💡⚫💡💡⚫
55 — 💡💡⚫💡💡💡
56 — 💡💡💡⚫⚫⚫
57 — 💡💡💡⚫⚫💡
58 — 💡💡💡⚫💡⚫
59 — 💡💡💡⚫💡💡
60 — 💡💡💡💡⚫⚫
61 — 💡💡💡💡⚫💡
62 — 💡💡💡💡💡⚫
63 — 💡💡💡💡💡💡
Если перед нами число 💡 ⚫💡⚫⚫ 💡💡⚫⚫, мы можем разложить его на разряды, как в предыдущих примерах:
256 + 0 + 64 + 0 + 0 + 8 + 4 + 0 + 0 = 332
Получается, что десятипалые люди могут записать это число с помощью цифр 332, а компьютер с транзисторами — последовательностью транзисторов 💡⚫💡⚫⚫ 💡💡⚫⚫.
Если теперь заменить включённые транзисторы на единицы, а выключенные на нули, получится запись 1 0100 1100. Это и есть наша двоичная запись того же самого числа.
Почему говорят, что компьютер состоит из единиц и нулей (и всё тлен)
Инженеры научились шифровать привычные для нас числа в последовательность включённых и выключенных транзисторов.
Дальше эти транзисторы научились соединять таким образом, чтобы они умели складывать зашифрованные числа. Например, если сложить 💡⚫⚫ и ⚫⚫💡, получится 💡⚫💡. Мы писали об этом подробнее в статье о сложении через транзисторы.
Дальше эти суммы научились получать супербыстро. Потом научились получать разницу. Потом умножать. Потом делить. Потом всё это тоже научились делать супербыстро. Потом научились шифровать не только числа, но и буквы. Научились их хранить и считывать. Научились шифровать цвета и координаты. Научились хранить картинки. Последовательности картинок. Видео. Инструкции для компьютера. Программы. Операционные системы. Игры. Нейросети. Дипфейки.
И всё это основано на том, что компьютер умеет быстро-быстро складывать числа, зашифрованные как последовательности включённых и выключенных транзисторов.
При этом компьютер не понимает, что он делает. Он просто гоняет ток по транзисторам. Транзисторы не понимают, что они делают. По ним просто бежит ток. Лишь люди придают всему этому смысл.
Когда человека не станет, скорость света будет по-прежнему 299 792 458 метров в секунду. Но уже не будет тех, кто примется считать метры и секунды. Такие дела.



