В повседневной жизни большинство людей оперируют достаточно небольшими числами. Десятки, сотни, тысячи, очень редко – миллионы, почти никогда – миллиарды. Примерно такими числами ограничено обычное представление человека о количестве или величине. Про триллионы приходилось слышать почти всем, но употреблять их, в каких-либо подсчетах, мало кому доводилось.
Какие они, числа-гиганты?
Между тем, числа обозначающие степени тысячи известны людям давно. В России и многих других странах используется простая и логичная система обозначений:
• Тысяча;
• Миллион;
• Биллион;
• Триллион;
• Квадриллион;
• Квинтиллион;
• Секстиллион;
• Септиллион;
• Октиллион;
• Нониллион;
• Дециллион.
В этой системе каждое следующее число получается умножением предыдущего на тысячу. Биллион обычно называют миллиардом.
Многие взрослые могут безошибочно написать такие числа как миллион – 1 000 000 и миллиард – 1 000 000 000. С триллионом уже сложнее, но почти все справятся – 1 000 000 000 000. А дальше начинается неведомая многим территория.
Знакомимся ближе с большими цифрами
Сложного, впрочем, ничего нет, главное – понять систему образования больших чисел и принцип наименования. Как уже говорилось, каждое следующее число превосходит предыдущее в тысячу раз. Это значит, что для того чтобы правильно написать следующее в порядке возрастания число, нужно к предыдущему приписать еще три нуля. То есть, у миллиона 6 нулей, у миллиарда их 9, у триллиона – 12, у квадрильона – 15, а у квинтиллиона – уже 18.
С названиями тоже можно разобраться, если есть желание. Слово «миллион» произошло от латинского «mille», которое означает «больше тысячи». Следующие числа были образованы путем приставления латинских слов «би» (два), «три» (три), «квадро» (четыре) и т.д.
Теперь попробуем представить себе эти цифры наглядно. Большинство довольно хорошо представляют себе разницу между тысячью и миллионом. Каждый понимает, что миллион рублей – это хорошо, но миллиард – больше. Гораздо больше. Также у всех есть представление о том, что триллион – это что-то абсолютно необъятное. Но насколько триллион больше миллиарда? Насколько он громаден?
Для многих дальше миллиарда начинается понятие «уму непостижимо». Действительно, миллиард километров или триллион – разница не очень большая в том смысле, что такое расстояние все равно не пройти за всю жизнь. Миллиард рублей или триллион тоже не особо отличается, потому что таких денег все равно не заработать за всю жизнь. Но давайте немного посчитаем, подключив фантазию.
Жилой фонд России и четыре футбольных поля как примеры
На каждого человека на земле приходится площадь суши размером 100х200 метров. Это примерно четыре футбольных поля. Но если людей будет не 7 миллиардов, а семь триллионов, то каждому достанется только кусочек суши 4х5 метров. Четыре футбольных поля против площади палисадника перед подъездом – таково соотношение миллиарда к триллиону.
В абсолютных значениях картина также впечатляет.
Если взять триллион кирпичей, то можно построить более 30 миллионов одноэтажных домов площадью по 100 квадратных метров. То есть около 3 миллиардов квадратных метров частной застройки. Это сопоставимо с общим жилым фондом РФ.
Если строить десятиэтажные дома, то получится примерно 2,5 миллиона домов, то есть 100 миллионов двух- трехкомнатных квартир, около 7 миллиардов квадратных метров жилья. Это в 2,5 раза больше всего жилого фонда России.
Одним словом, во всей России не наберется триллион кирпичей.
Один квадриллион ученических тетрадей покроет всю территорию России двойным слоем. А один квинтиллион тех же тетрадей накроет всю сушу слоем толщиной в 40 сантиметров. Если же удастся раздобыть секстиллион тетрадей, то вся планета, включая океаны, окажется под слоем толщиной в 100 метров.
Досчитаем до дециллиона
Давайте посчитаем еще. Например, спичечный коробок, увеличенный в тысячу раз, будет размером с шестнадцатиэтажный дом. Увеличение в миллион раз даст «коробок», который по площади больше Санкт-Петербурга. Увеличенный в миллиард раз, коробок не поместится на нашей планете. Наоборот, Земля поместится в такой «коробок» 25 раз!
Если считать дальше, то масштабы Земли окажутся уже недостаточными. Увеличенный в триллион раз коробок мог бы вместить в себя все планеты Солнечной системы вместе с их спутниками, а также астероиды и кометы. В коробке, который увеличен в квадриллион раз, Солнечная система могла бы поместиться полностью.
Увеличение коробка дает увеличение его объема. Вообразить себе такие объемы при дальнейшем увеличении будет уже почти невозможно. Для простоты восприятия попробуем увеличивать не сам предмет, а его количество, и расположим спичечные коробки в пространстве. Так будет легче ориентироваться. Квинтиллион коробков выложенных в один ряд, протянулись бы дальше звезды α Центавра на 9 триллионов километров.
Еще одно тысячекратное увеличение (секстиллион) позволит спичечным коробкам, выстроенным в линию, перегородить всю нашу галактику Млечный путь в поперечном направлении. Септиллион спичечных коробков растянулись бы на 50 квинтиллионов километров. Такое расстояние свет сможет пролететь за 5 миллионов 260 тысяч лет. А выложенные в два ряда коробки протянулись бы до галактики Андромеды.
Осталось только три числа: октиллион, нониллион и дециллион. Придется напрячь воображение. Октиллион коробков образует непрерывную линию в 50 секстиллионов километров. Это боле пяти миллиардов световых лет. Не каждый телескоп, установленный на одном краю такого объекта, мог бы разглядеть его противоположный край.
Считаем дальше? Нониллион спичечных коробков заполнил бы собой все пространство известной человечеству части Вселенной со средней плотностью 6 штук на кубический метр. По земным меркам вроде бы не очень-то и много – 36 спичечных коробков в кузове стандартной «Газели». Но нониллион спичечных коробков будет иметь массу в миллиарды раз больше чем масса всех материальных объектов известной Вселенной вместе взятых.
Дециллион. Величину, а скорее даже величественность этого исполина из мира чисел трудно себе вообразить. Только один пример – шесть дециллионов коробков уже не поместились бы во всей доступной человечеству для наблюдения части Вселенной.
Еще более поразительно величественность этого числа видна, если не умножать количество коробков, а увеличить сам предмет. Спичечный коробок, увеличенный в дециллион раз, вместил бы в себя всю известную человечеству часть Вселенной 20 триллионов раз. Невозможно такое себе даже просто представить.
Небольшие подсчеты показали, насколько огромны числа, известные человечеству уже несколько веков. В современной математике известны числа во много раз превосходящие дециллион, но применяются они только в сложных математических вычислениях. Сталкиваться с подобными числами приходится только профессиональным математикам.
Самым известным (и самым маленьким) из таких чисел является гугол, обозначаемый единицей со ста нулями. Гугол больше чем общее число элементарных частиц в видимой нам части Вселенной. Это делает гугол абстрактным числом, которое не имеет большого практического применения.
masterok
Мастерок.жж.рф
Хочу все знать
“Я вижу скопления смутных чисел, которые скрывается там, в темноте, за небольшим пятном света, которое дает свеча разума. Они шепчутся друг с другом; сговариваясь кто знает о чем. Возможно, они нас не очень любят за захват их меньших братишек нашими умами. Или, возможно, они просто ведут однозначный числовой образ жизни, там, за пределами нашего понимания’’.
Дуглас Рэй
Каждого рано или поздно мучает вопрос, а какое же самое большое число. На вопрос ребенка можно ответить миллион. А что дальше? Триллион. А еще дальше? На самом деле, ответ на вопрос какие же самые большие числа прост. К самому большому числу просто стоит добавить единицу, как оно уже не будет самым большим. Процедуру эту можно продолжать до бесконечности. Т.е. получается нет самого большого числа в мире? Это бесконечность?
Существуют две системы наименования чисел — американская и английская.
Из английской системы в русский язык перешло только число миллиард (10 9 ), которое всё же было бы правильнее называть так, как его называют американцы — биллионом, так как у нас принята именно американская система. Но кто у нас в стране что-то делает по правилам! 
Кроме чисел, записанных при помощи латинских префиксов по американской или англйской системе, известны и так называемые внесистемные числа, т.е. числа, которые имеют свои собственные названия безо всяких латинских префиксов. Таких чисел существует несколько, но подробнее о них я расскажу чуть позже.
Вернемся к записи при помощи латинских числительных. Казалось бы, что ими можно записывать числа до бессконечности, но это не совсем так. Сейчас объясню почему. Посмотрим для начала как называются числа от 1 до 10 33 :
Самое маленькое такое число — это мириада (оно есть даже в словаре Даля), которое означает сотню сотен, то есть — 10 000. Слово это, правда, устарело и практически не используется, но любопытно, что широко используется слово «мириады», которое означает вовсе не определённое число, а бесчисленное, несчётное множество чего-либо. Считается, что слово мириада (англ. myriad) пришло в европейские языки из древнего Египта.
Гугол (от англ. googol) — это число десять в сотой степени, то есть единица со ста нулями. О «гуголе» впервые написал в 1938 году в статье «New Names in Mathematics» в январском номере журнала Scripta Mathematica американский математик Эдвард Каснер (Edward Kasner). По его словам, назвать «гуголом» большое число предложил его девятилетний племянник Милтон Сиротта (Milton Sirotta). Общеизвестным же это число стало благодаря, названной в честь него, поисковой машине Google. Обратите внимание, что «Google» — это торговая марка, а googol — число.

Эдвард Каснер (Edward Kasner).
Words of wisdom are spoken by children at least as often as by scientists. The name «googol» was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested «googol» he gave a name for a still larger number: «Googolplex.» A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out.
Mathematics and the Imagination (1940) by Kasner and James R. Newman.
Как вы понимаете чем больше в числе степеней, тем сложнее понять какое из чисел больше. Например, посмотрев на числа Скьюза, без специальных вычислений практически невозможно понять, какое из этих двух чисел больше. Таким образом, для сверхбольших чисел пользоваться степенями становится неудобно. Мало того, можно придумать такие числа (и они уже придуманы), когда степени степеней просто не влезают на страницу. Да, что на страницу! Они не влезут, даже в книгу, размером со всю Вселенную! В таком случае встаёт вопрос как же их записывать. Проблема, как вы понимаете разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой придумывал свой способ записи, что привело к существованию нескольких, не связанных друг с другом, способов для записи чисел — это нотации Кнута, Конвея, Стейнхауза и др.
Рассмотрим нотацию Хьюго Стенхауза (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), которая довольно проста. Стейн хауз предложил записывать большие числа внутри геометрических фигур — треугольника, квадрата и круга:
Математик Лео Мозер доработал нотацию Стенхауза, которая была ограничена тем, что если требовалаось записывать числа много больше мегистона, возникали трудности и неудобства, так как приходилось рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:
Но и мозер не самое большое число. Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма (Graham’s number), впервые использованная в 1977 года в доказательстве одной оценки в теории Рамсея. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1976 году.
К сожалению, число записанное в нотации Кнута нельзя перевести в запись по системе Мозера. Поэтому придётся объяснить и эту систему. В принципе в ней тоже нет ничего сложного. Дональд Кнут (да, да, это тот самый Кнут, который написал «Искусство программирования» и создал редактор TeX) придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:
В общем виде это выглядит так:
Думаю, что всё понятно, поэтому вернёмся к числу Грэма. Грэм предложил, так называемые G-числа:
Число G 63 стало называться числом Грэма (обозначается оно часто просто как G). Это число является самым большим известным в мире числом и занесёно даже в «Книгу рекордов Гинесса». А, вот тут лежит доказательство, что число Грэма больше числа Мозера.
Так есть числа больше, чем число Грэма? Есть, конечно, для начала есть число Грэма + 1. Что касается значащего числа… хорошо, есть некоторые дьявольски сложные области математики (в частности, области, известной как комбинаторика) и информатики, в которых встречаются числа даже большие, чем число Грэма. Но мы почти достигли предела того, что можно разумно и понятно объяснить.
masterok
Мастерок.жж.рф
Хочу все знать
“Я вижу скопления смутных чисел, которые скрывается там, в темноте, за небольшим пятном света, которое дает свеча разума. Они шепчутся друг с другом; сговариваясь кто знает о чем. Возможно, они нас не очень любят за захват их меньших братишек нашими умами. Или, возможно, они просто ведут однозначный числовой образ жизни, там, за пределами нашего понимания’’.
Дуглас Рэй
Каждого рано или поздно мучает вопрос, а какое же самое большое число. На вопрос ребенка можно ответить миллион. А что дальше? Триллион. А еще дальше? На самом деле, ответ на вопрос какие же самые большие числа прост. К самому большому числу просто стоит добавить единицу, как оно уже не будет самым большим. Процедуру эту можно продолжать до бесконечности. Т.е. получается нет самого большого числа в мире? Это бесконечность?
Существуют две системы наименования чисел — американская и английская.
Из английской системы в русский язык перешло только число миллиард (10 9 ), которое всё же было бы правильнее называть так, как его называют американцы — биллионом, так как у нас принята именно американская система. Но кто у нас в стране что-то делает по правилам! 
Кроме чисел, записанных при помощи латинских префиксов по американской или англйской системе, известны и так называемые внесистемные числа, т.е. числа, которые имеют свои собственные названия безо всяких латинских префиксов. Таких чисел существует несколько, но подробнее о них я расскажу чуть позже.
Вернемся к записи при помощи латинских числительных. Казалось бы, что ими можно записывать числа до бессконечности, но это не совсем так. Сейчас объясню почему. Посмотрим для начала как называются числа от 1 до 10 33 :
Самое маленькое такое число — это мириада (оно есть даже в словаре Даля), которое означает сотню сотен, то есть — 10 000. Слово это, правда, устарело и практически не используется, но любопытно, что широко используется слово «мириады», которое означает вовсе не определённое число, а бесчисленное, несчётное множество чего-либо. Считается, что слово мириада (англ. myriad) пришло в европейские языки из древнего Египта.
Гугол (от англ. googol) — это число десять в сотой степени, то есть единица со ста нулями. О «гуголе» впервые написал в 1938 году в статье «New Names in Mathematics» в январском номере журнала Scripta Mathematica американский математик Эдвард Каснер (Edward Kasner). По его словам, назвать «гуголом» большое число предложил его девятилетний племянник Милтон Сиротта (Milton Sirotta). Общеизвестным же это число стало благодаря, названной в честь него, поисковой машине Google. Обратите внимание, что «Google» — это торговая марка, а googol — число.

Эдвард Каснер (Edward Kasner).
Words of wisdom are spoken by children at least as often as by scientists. The name «googol» was invented by a child (Dr. Kasner’s nine-year-old nephew) who was asked to think up a name for a very big number, namely, 1 with a hundred zeros after it. He was very certain that this number was not infinite, and therefore equally certain that it had to have a name. At the same time that he suggested «googol» he gave a name for a still larger number: «Googolplex.» A googolplex is much larger than a googol, but is still finite, as the inventor of the name was quick to point out.
Mathematics and the Imagination (1940) by Kasner and James R. Newman.
Как вы понимаете чем больше в числе степеней, тем сложнее понять какое из чисел больше. Например, посмотрев на числа Скьюза, без специальных вычислений практически невозможно понять, какое из этих двух чисел больше. Таким образом, для сверхбольших чисел пользоваться степенями становится неудобно. Мало того, можно придумать такие числа (и они уже придуманы), когда степени степеней просто не влезают на страницу. Да, что на страницу! Они не влезут, даже в книгу, размером со всю Вселенную! В таком случае встаёт вопрос как же их записывать. Проблема, как вы понимаете разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой придумывал свой способ записи, что привело к существованию нескольких, не связанных друг с другом, способов для записи чисел — это нотации Кнута, Конвея, Стейнхауза и др.
Рассмотрим нотацию Хьюго Стенхауза (H. Steinhaus. Mathematical Snapshots, 3rd edn. 1983), которая довольно проста. Стейн хауз предложил записывать большие числа внутри геометрических фигур — треугольника, квадрата и круга:
Математик Лео Мозер доработал нотацию Стенхауза, которая была ограничена тем, что если требовалаось записывать числа много больше мегистона, возникали трудности и неудобства, так как приходилось рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:
Но и мозер не самое большое число. Самым большим числом, когда-либо применявшимся в математическом доказательстве, является предельная величина, известная как число Грэма (Graham’s number), впервые использованная в 1977 года в доказательстве одной оценки в теории Рамсея. Оно связано с бихроматическими гиперкубами и не может быть выражено без особой 64-уровневой системы специальных математических символов, введённых Кнутом в 1976 году.
К сожалению, число записанное в нотации Кнута нельзя перевести в запись по системе Мозера. Поэтому придётся объяснить и эту систему. В принципе в ней тоже нет ничего сложного. Дональд Кнут (да, да, это тот самый Кнут, который написал «Искусство программирования» и создал редактор TeX) придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:
В общем виде это выглядит так:
Думаю, что всё понятно, поэтому вернёмся к числу Грэма. Грэм предложил, так называемые G-числа:
Число G 63 стало называться числом Грэма (обозначается оно часто просто как G). Это число является самым большим известным в мире числом и занесёно даже в «Книгу рекордов Гинесса». А, вот тут лежит доказательство, что число Грэма больше числа Мозера.
Так есть числа больше, чем число Грэма? Есть, конечно, для начала есть число Грэма + 1. Что касается значащего числа… хорошо, есть некоторые дьявольски сложные области математики (в частности, области, известной как комбинаторика) и информатики, в которых встречаются числа даже большие, чем число Грэма. Но мы почти достигли предела того, что можно разумно и понятно объяснить.
Системы наименования чисел
В европейской традиции исторически сложились два варианта построения системы наименования чисел.
Содержание
Краткая история
Термин «миллион» итальянского происхождения и встречается уже в первой печатной арифметике (анонимной), вышедшей в итальянском городе Тревизо в 1478 году, и ещё ранее в нематематической книге путешественника Марко Поло (умер в 1324 году), а в форме «миллио» — уже в рукописи 1250 года.
Для чтения многозначных чисел анонимная рукопись 1200 года впервые рекомендует разбить цифры на группы по 3 или отмечать группы точками вверху или дугами; это же затем рекомендует Леонардо Пизанский (1228). К этой системе приходят и последующие авторы.
Использование систем наименования чисел в мире:
| короткая шкала длинная шкала | обе шкалы другие системы |
В России первоначально была введена система наименования чисел с длинной шкалой, и, по-видимому, в печатном виде впервые в 1703 году в «Арифметике» Л. Ф. Магницкого. Однако в конце XVIII века, в царствование императора Павла I, вслед за Францией произошёл переход на короткую шкалу. Так, в опубликованном в 1798 году переводе части первой — «Арифметика» — «Курса математики» Этьенна Безу введена система наименования чисел с короткой шкалой, при том, что ещё в опубликованной в 1791 году книге «Арифметика или числовник» Н. Г. Курганова (1725 или 1726—1796) используется длинная шкала.
В дальнейшем выбор системы наименования чисел в России — СССР — РФ не менялся. Однако Франция в 1948 году вернулась к системе с длинной шкалой, поэтому сейчас используемая в России система отличается от французской, хотя и заимствовалась во Франции.
Короткая шкала
Длинная шкала
Названия чисел в этой системе строятся так: к латинскому числительному [1] добавляют суффикс «-иллион», название следующего числа (в 1000 раз большего) образуется из того же самого латинского числительного, но с суффиксом «-иллиард». То есть после триллиона в этой системе идёт триллиард, а только затем квадриллион, за которым следует квадриллиард и т. д. Количество нулей в числе, записанном по этой системе и оканчивающегося суффиксом «-иллион», определяется по формуле 6·x (где x — латинское числительное) и по формуле 6·x+3 для чисел, оканчивающихся на «-иллиард».
Сравнение систем
Таблица от значения к названию
| Порядок | Значение | Короткая шкала | Длинная шкала | СИ | ||
|---|---|---|---|---|---|---|
| Название | Логика построения | Название | Логика построения | |||
| 0 | 10 0 | один | один | |||
| 1 | 10³ | тысяча | 1000 1 + 0 | тысяча | 1 000 000 0,5 | кило- |
| 2 | 10 6 | миллион | 1000 1 + 1 | миллион | 1 000 000 1,0 | мега- |
| 3 | 10 9 | биллион (миллиард) [2] | 1000 1 + 2 | тысяча миллионов (миллиард) | 1 000 000 1,5 | гига- |
| 4 | 10 12 | триллион | 1000 1 + 3 | биллион | 1 000 000 2,0 | тера- |
| 5 | 10 15 | квадриллион | 1000 1 + 4 | тысяча биллионов (биллиард) | 1 000 000 2,5 | пета- |
| 6 | 10 18 | квинтиллион | 1000 1 + 5 | триллион | 1 000 000 3,0 | экса- |
| 7 | 10 21 | секстиллион | 1000 1 + 6 | тысяча триллионов (триллиард) | 1 000 000 3,5 | зетта- |
| 8 | 10 24 | септиллион | 1000 1 + 7 | квадриллион | 1 000 000 4,0 | йотта- |
| 9 | 10 27 | октиллион | 1000 1 + 8 | тысяча квадриллионов (квадриллиард) | 1 000 000 4,5 | |
| 10 | 10 30 | нониллион | 1000 1 + 9 | квинтиллион | 1 000 000 5,0 | |
| 11 | 10 33 | дециллион | 1000 1 + 10 | тысяча квинтиллионов (квинтиллиард) | 1 000 000 5,5 | |
Таблица от названия к значению
Примечания
Литература
Полезное
Смотреть что такое «Системы наименования чисел» в других словарях:
Число — У этого термина существуют и другие значения, см. Число (значения). Число основное понятие математики[1], используемое для количественной характеристики, сравнения и нумерации объектов. Возникнув ещё в первобытном обществе из потребностей… … Википедия
Число (матем.) — см. также: Число (лингвистика) Число абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое … Википедия
Зиллион — (англ. zillion) общее название для очень больших чисел. Этот термин не имеет строгого математического определения. В 1996 году Конвей (англ. J. H. Conway) и Гай (англ. R. K. Guy) в своей книге англ. The Book of Numbers… … Википедия
Лимард — Миллиард (млрд) в европейской системе наименования чисел тысяча миллионов, число, изображаемое единицей с девятью нулями (1 000 000 000), 109. Приставки СИ: для миллиарда гига (109), для одной миллиардной нано (10−9). В американской системе… … Википедия
Млрд — Миллиард (млрд) в европейской системе наименования чисел тысяча миллионов, число, изображаемое единицей с девятью нулями (1 000 000 000), 109. Приставки СИ: для миллиарда гига (109), для одной миллиардной нано (10−9). В американской системе… … Википедия
Именные названия степеней тысячи — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (13 мая 2011) … Википедия
Дециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия
Додециллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия
Квинтиллион — Именные названия степеней тысячи в порядке возрастания Название Значение Американская система Европейская система тысяча 10³ 10³ миллион 106 106 миллиард 109 109 биллион 109 1012 триллион 1012 … Википедия












