тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему

Синус, косинус, тангенс в прямоугольном треугольнике

Гипотенузой называется та сторона треугольника, что лежит против угла в 90 градусов, две оставшиеся стороны называются катетами прямоугольного треугольника.

Подробнее про прямоугольный треугольник здесь.

Синусом угла в прямоугольном треугольнике называется отношение противолежащего катета к гипотенузе.

Косинусом угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе.

Тангенсом угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.

Котангенсом угла в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.

Бывает (и на ЕГЭ, ГИА), что приходится иметь дело с косинусами, синусами и тангенсами внешних углов треугольника. Формулы приведения позволяют увидеть, что есть еще и вот такая связь между смежными углами (помимо того, что их сумма равна 180):

Смотрите подборку задач на применение указанных соотношений в статье «Прямоугольный треугольник. Вычисление длин и углов» часть I, часть II.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Тангенс в прямоугольном треугольнике

Что такое тангенс в прямоугольном треугольнике? Как найти тангенс? От чего зависит значение тангенса?

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Например, для угла A треугольника ABC

Поэтому тангенс угла A в треугольнике ABC — это

Для угла B треугольника ABC

противолежащим является катет AC,

Соответственно, тангенс угла B в треугольнике ABC

равен отношению AC к BC:

Таким образом, тангенс острого угла прямоугольного треугольника — это некоторое число, получаемое при делении длины противолежащего катета на длину прилежащего катета.

Так как длины катетов — положительные числа, то и тангенс острого угла прямоугольного треугольника является положительным числом.

Тангенс угла треугольника зависит от величины угла, но не зависит от катетов (важно лишь их отношение).

Если в треугольнике изменить длины катетов, не меняя угол, то величина тангенса не изменится.

Источник

Синус, косинус и тангенс острого угла прямоугольного треугольника

(1)

(2)

(3)

Из формул (1) и (2) получаем:

Сравнивая с формулой (3), находим:

(4)

Получили, что тангенс угла равен отношению синуса к косинусу этого угла.

Докажем, что если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то синусы этих углов равны, косинусы этих углов равны и тангенсы этих углов равны.

Доказать: sin A = sin A1, cos A = cos A1, tg A = tg A1.

Доказательство:

Из этих равенств следует, что т.е. sin A = sin A1. Аналогично , т.е. cos A = cos A1, и , т.е. tg A = tg A1, что и требовалось доказать.

Мы получили, что синус, косинус и тангенс острого угла зависит только от величины этого угла.

Докажем основное тригонометрическое тождество:

Из формул (1) и (2) получаем

По теореме Пифагора , поэтому .

Поделись с друзьями в социальных сетях:

Источник

Синус, косинус и тангенс острого угла прямоугольного треугольника

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол — это угол, равный 90 градусов. Другими словами, половина развернутого угла.

Острый угол — меньший 90 градусов.

Тупой угол — больший 90 градусов. Применительно к такому углу «тупой» — не оскорбление, а математический термин :-)

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла.

Катеты — стороны, лежащие напротив острых углов.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике — отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов — свое соотношение, для сторон — свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс — их еще называют тригонометрическими функциями угла — дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

0
0
0
0
0

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

Задача решается за четыре секунды.

Найдем по теореме Пифагора.

Треугольник с углами и — равнобедренный. В нем гипотенуза в раз больше катета.

Мы рассмотрели задачи на решение прямоугольных треугольников — то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника. Об этом — в следующей статье.

Источник

Начальные сведения о синусе, косинусе, тангенсе и котангенсе

Определения

Синус острого угла в прямоугольном треугольнике – это отношение противолежащего к этому углу катета к гипотенузе: \(\sin \alpha=\dfrac ac\)

Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего к этому углу катета к гипотенузе: \(\cos \alpha=\dfrac bc\)

Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего к этому углу катета к прилежащему катету: \(\mathrm\,\alpha=\dfrac ab\)

Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего к этому углу катета к противолежащему катету: \(\mathrm\,\alpha=\dfrac ba\)

Утверждение

Синусы, косинусы, тангенсы и котангенсы равных углов соответственно равны.

Теорема

Из определений синуса, косинуса, тангенса и котангенса вытекают следующие формулы:

Утверждение

В прямоугольном треугольнике \(ABC\) с прямым углом \(\angle C\) :

\(\sin \angle A=\cos \angle B\)

Доказательство

Утверждение следует непосредственно из определения синуса и косинуса острого угла в прямоугольном треугольнике.

Теорема

Для углов \(30^\circ, 45^\circ, 60^\circ\) верна следующая таблица:

\[<\large<\begin <|c|c|c|c|>\hline & \phantom<000>30^\circ \phantom <000>& \phantom <000>45^\circ \phantom <000>& \phantom <000>60^\circ \phantom <000>\\[2pt] \hline &&&\\ \sin &\frac12&\frac<\sqrt2>2&\frac<\sqrt3>2\\[4pt] \cos &\frac<\sqrt3>2&\frac<\sqrt2>2&\frac12\\[4pt] \mathrm &\frac<\sqrt3>3&1&\sqrt3\\[4pt] \mathrm&\sqrt3&1&\frac<\sqrt3>3\\[4pt] \hline \end>>\]

Доказательство

Теперь по определению \(\sin \angle A=\sin 60^\circ =\dfrac ac=\dfrac<\sqrt3>2\)

Замечание

Для простоты запоминания таблицы можно записать ее в следующем виде:

Теорема

Справедливы следующие формулы приведения:

\[\begin \sin(180^\circ-\alpha)&=\sin\alpha\\ \cos(180^\circ-\alpha)&=-\cos\alpha\\ \mathrm\,(180^\circ-\alpha)&=-\mathrm\,\alpha\\ \mathrm\,(180^\circ-\alpha)&=-\mathrm\,\alpha \end\]

Пример

Учащиеся, которые готовятся к сдаче ЕГЭ по математике и при этом рассчитывают на получение конкурентных баллов по итогам его прохождения, непременно должны повторить теорию о синусе, косинусе, тангенсе и котангенсе. Как показывает практика, задания по данной тематике ежегодно встречаются в аттестационном испытании. Таким образом, если одним из ваших слабых мест являются формулы и теоремы синусов, косинусов, тангенсов и котангенсов, рекомендуем освежить в памяти базовую теорию. В этом вам поможет образовательный портал «Школково». В соответствующем разделе представлена теория о синусах, косинусах, тангенсах и котангенсах, которая позволит вам подготовиться к сдаче экзамена. Весь базовый материал составлен нашими специалистами на основе многолетнего опыта и представлен в максимально доступной форме. Ознакомившись с теорией, выпускник сможет грамотно объяснять решение задач ЕГЭ на синусы, косинусы, тангенсы и котангенсы. В этом состоит половина успеха при прохождении аттестационного испытания.

Для того чтобы учащиеся из Москвы или другого населенного пункта России, посетившие наш ресурс, смогли легко и качественно подготовиться к ЕГЭ, мы не только в понятной форме изложили теорию косинусов, синусов, тангенсов и котангенсов, но и подобрали соответствующие упражнения. Для каждого из них наши специалисты прописали подробный алгоритм решения и правильный ответ. Выполняя такие задачи при подготовке к ЕГЭ по математике, выпускники смогут лучше закрепить изученную теорию синусов и косинусов в треугольнике. Выбрать простые и более сложные упражнения вы можете в разделе «Каталог».

Изучив теорию о синусах, косинусах, тангенсах и котангенсах и попрактиковавшись в решении задач по данной теме при подготовке к ЕГЭ, учащиеся имеют возможность сохранить любое задание в «Избранное», чтобы при необходимости обсудить его с преподавателем.

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • ярмольник ведущий каких программ
  • Ярлыки не работают что делать если ярлыки не открываются как восстановить ярлыки программы
  • Ярлык стал белым что делать windows 10
  • японская система развития интеллекта и памяти программа 60 дней читать
  • японская система развития интеллекта и памяти программа 60 дней питер

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии