три формы комплексного числа алгебраическая тригонометрическая показательная

Комплексные числа

Формы

Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:

Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.

Изображение

Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:

Вычислить сумму и разность заданных комплексных чисел:

Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:

Аналогично выполним вычитание чисел:

Выполнить умножение и деление комплексных чисел:

Так, теперь разделим первое число на второе:

Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:

Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:

Для возведения в квадрат достаточно умножить число само на себя:

Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:

В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.

Вычисляем значение модуля:

Найдем чем равен аргумент:

$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$

Записываем в тригонометрическом виде:

Преобразуем в алгебраическую форму для наглядности:

Представим число в тригонометрической форме. Найдем модуль и аргумент:

Используем знакомую формулу Муавра для вычисления корней любой степени:

Источник

Три формы комплексного числа алгебраическая тригонометрическая показательная

где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы

Понятия «больше» и «меньше» для комплексных чисел не вводятся.

Числа z = x + iy и называются комплексно сопряженными.

Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.

Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотно­шений сторон в прямоугольном треугольнике получа­ем

Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле

Аргумент определяется из формул:

Используя формулу Эйлера

комплексное число можно записать в так назы­ваемой показательной (или экспоненциальной) форме

где r =| z | — модуль комплексного числа, а угол ( k =0;1;1;2;2…).

Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.

На множестве комплексны х чисел определен ряд операций.

Из (7.11) следует важнейшее соотношение i 2 = 1. Действительно,

Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:

(7.13) называется первой формулой Муавра.

Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:

На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = 1 и формулы разности квадратов.

Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:

Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.

Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:

Пользуясь формулой (7.11), вычислим их произведение

На основании формулы (7.14) вычислим их частное

Решение. Используя (7.4) и (7.5), получаем:

Аналогично, для z 2 можно записать:

По формулам (7.12) и (7.16) получим в тригонометрической форме:

Пользуясь формулами (7.14) и (7.17), получим в показательной форме:

в натуральную степень, определенному ранее формулой (7.13).

(7.18) называется второй формулой Муавра.

Пример 7.4. Найти все корни уравнения z 4 +16=0.

Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами

Приведем еще одну теорему, имеющую место над множеством комплексных чисел.

Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.

Источник

Комплексные числа

Алгебраическая форма записи комплексных чисел
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Комплексно сопряженные числа
Модуль комплексного числа
Деление комплексных чисел, записанных в алгебраической форме
Изображение комплексных чисел радиус-векторами на координатной плоскости
Аргумент комплексного числа
Тригонометрическая форма записи комплексного числа
Формула Эйлера. Экспоненциальная форма записи комплексного числа
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Извлечение корня натуральной степени из комплексного числа

Алгебраическая форма записи комплексных чисел

Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.

Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.

Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме

Комплексно сопряженные числа

Модуль комплексного числа

Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле

Для произвольного комплексного числа z справедливо равенство:

а для произвольных комплексных чисел z1 и z2 справедливы неравенства:

Деление комплексных чисел, записанных в алгебраической форме

Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле

Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:

Деление на нуль запрещено.

Изображение комплексных чисел радиус-векторами координатной плоскости

Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.

При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.

Аргумент комплексного числа

Считается, что комплексное число нуль аргумента не имеет.

Тогда оказывается справедливым равенство:

(3)
(4)

а аргумент определяется в соответствии со следующей Таблицей 1.

Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.

Таблица 1. – Формулы для определения аргумента числа z = x + i y

y z

Расположение
числа z
Знаки x и y Главное значение аргумента Аргумент Примеры
Положительная
вещественная
полуось
Положительная
мнимая
полуось
Второй
квадрант
Отрицательная
вещественная
полуось
Положительная
вещественная
полуось
Знаки x и y
Главное
значение
аргумента
0
Аргумент φ = 2kπ
Примеры
Главное
значение
аргумента Аргумент Примеры Главное
значение
аргумента Аргумент Примеры Главное
значение
аргумента Аргумент Примеры

x z Третий
квадрант Знаки x и y

x z Отрицательная
мнимая
полуось Знаки x и y

y z Четвёртый
квадрант Знаки x и y

Положительная вещественная полуось

Главное значение аргумента:

Расположение числа z :

Главное значение аргумента:

Расположение числа z :

Положительная мнимая полуось

Главное значение аргумента:

Расположение числа z :

Главное значение аргумента:

Расположение числа z :

Отрицательная вещественная полуось

Отрицательная мнимая полуось

x z = x + i y может быть записано в виде

Формула Эйлера. Экспоненциальная форма записи комплексного числа

В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :

Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде

Из формулы (7) вытекают, в частности, следующие равенства:

а из формул (4) и (6) следует, что модуль комплексного числа

Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме

Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.

Действительно, умножение и деление двух произвольных комплексных чисел и записанных в экспоненциальной форме, осуществляется по формулам

Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.

При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.

Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле

Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.

Извлечение корня натуральной степени из комплексного числа

Пусть — произвольное комплексное число, отличное от нуля.

Для того, чтобы решить уравнение (8), перепишем его в виде

следствием которых являются равенства

(9)

Из формул (9) вытекает, что уравнение (8) имеет n различных корней

(10)

то по формуле (10) получаем:

Источник

Алгебраическая, тригонометрическая и показательная формы записи комплексных чисел.

Алгебраическая форма

Запись комплексного числа в виде , , называется алгебраической формой комплексного числа.

Сумма и произведение комплексных чисел могут быть вычислены непосредственным суммированием и перемножением таких выражений, как обычно раскрывая скобки и приводя подобные, чтобы представить результат тоже в стандартной форме (при этом надо учесть, что ):

Тригонометрическая и показательная формы

Если вещественную и мнимую части комплексного числа выразить через модуль и аргумент ( , ), то всякое комплексное число , кроме нуля, можно записать в тригонометрической форме

Также может быть полезна показательная форма записи комплексных чисел, тесно связанная с тригонометрической через формулу Эйлера:

где — расширение экспоненты для случая комплексного показателя степени.

Отсюда вытекают следующие широко используемые равенства:

42. Действия над комплексными числами

Сложение и вычитание

По аналогии со сложением и вычитанием векторов мы приходим к следующему правилу сложения и вычитания комплексных чисел:

Операция введена, так как получили элемент того же множества.

Из правила сложения получаем:

Умножение комплексных чисел

Определение.Произведением двух комплексных чисел называется такое комплексное число, модуль которого равен произведению модулей сомножителей, а аргумент – сумме аргументов сомножителей.

Это определение совершенно очевидно, если использовать показательную форму комплексного числа:

Имеем .

Согласно определению умножения можем записать:

.

Распишем: ,

,

.

.

Отсюда следует правило умножения комплексных чисел в алгебраической форме: комплексные числа можно перемножать как многочлены.

, но , следовательно, .

Деление комплексных чисел

.

Модуль частного равен частному модулей делимого и делителя, а аргумент частного равен разности аргументов делимого и делителя.

Если делимое и делитель даны в алгебраической форме, топравило деления таково: для того, чтобы разделить комплексное число(a1 + b1i ) на другое комплексное число (a2 + b2i ), то есть найти , нужно и числитель, и знаменатель умножить на число, сопряжённое знаменателю.

.

В результате операции получили элемент того же множества. Значит, операция деления считается введённой.

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • ярмольник ведущий каких программ
  • Ярлыки не работают что делать если ярлыки не открываются как восстановить ярлыки программы
  • Ярлык стал белым что делать windows 10
  • японская система развития интеллекта и памяти программа 60 дней читать
  • японская система развития интеллекта и памяти программа 60 дней питер

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии