Что такое надежность в программировании

Надёжность программного обеспечения

Надёжность программного обеспечения | areliability.com блог инженера по надёжности

Статья обновлена 23.04.2020

Надёжность программного обеспечения. Введение

На предприятиях космической отрасли ситуация ещё лучше. Когда я спросил у специалистов одного уральского НПО, как они считают надёжность программного обеспечения, они сделали круглые глаза и сказали: «А чё там, за единицу берём да и всё. А надёжность обеспечиваем отработкой». Я согласен, что такой подход имеет право на жизнь, однако хотелось бы большего. Короче, я написал свою методику, прошу любить и жаловать. Внизу привожу калькулятор, на котором можно посчитать надёжность этого вашего ПО.

Проблема надёжности программного обеспечения приобретает все большее значение в связи с постоянным усложнением разрабатываемых систем, расширением круга задач, возлагаемых на них, а, следовательно, и значительным увеличением объемов и сложности ПО. Короче, мы дожили до того дня, когда железо стало надёжнее софта, и одна ошибка в программном коде может угробить космическую миссию ценой в миллиарды долларов.

По факту, пообщавшись с коллегами по надёжности и функциональной безопасности, мы коллективно пришли к выводу, что оценивать ВБР (вероятность безотказной работы) ПО не имеет смысла. ПО это тот объект, для которого малоприменимы хорошо отработанные методики оценки надёжности, используемые при оценке компонентов, агрегатов и систем.

Если вы хотите хорошо разбираться в вопросах надежности техники и стать высокооплачиваемым специалистом, приглашаю вас пройти мой курс по обучению надёжности.

Надёжность программного обеспечения обуславливается наличием в программах разного рода ошибок, внесенных в неё, как правило, при разработке. Под надёжностью ПО будем понимать способность выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям исполнения. Под ошибкой понимают всякое невыполнение программой заданных функций. Проявление ошибки является отказом программы.

Показатели надёжности ПО

Наиболее распространенными показателями надёжности ПО являются следующие:
– начальное число ошибок N0 в ПО после сборки программы и перед её отладкой;
– число ошибок n в ПО, обнаруженных и оставшихся после каждого этапа отладки;
– наработка на отказ (MTBF), часов;
– вероятность безотказной работы (ВБР) ПО за заданное время работы P(t);
– интенсивность отказов ПО λ, 10-6 1/ч.

Упрощенная оценка надёжности ПО

Сперва рассмотрим методики, которые предлагаем нам отечественная нормативная база. Единственный нормативный документ по данной теме это ГОСТ 28195-99.
Оценка надежности ПО по ГОСТ 28195-99 рассчитывается по весьма упрощенной методике, констатирующей фактическую надёжность по опыту эксплуатации программного комплекса P(t) 1-n/N, где n – число отказов при испытаниях ПО; N – число экспериментов при испытаниях. Очевидно, что посчитать по этой методике ничего нельзя.

Статистическая оценка надёжности ПО

Куда больший интерес представляет описанная в [1] среднестатистическая оценка начального числа N0 ошибок в ПО после автономной отладки. Согласно данной оценке, количество ошибок на 1 К слов кода составляет 4,34 для языков низкого уровня (Ассемблер) и 1,44 для языков высокого уровня (С++). К сожалению, не совсем понятно, что имели в виду авторы под фразой «1 К слов кода». В англоязычной литературе принято использовать параметр тысяча строк кода (ТСК) (KLOC). Так, согласно [3] для операционной системы Windows 2000 плотность ошибок составляет 1,8-2,2 на ТСК. Учитывая, что Windows 2000 написан на языке программирования C и имеет близкую размерность числа ошибок, можно с высокой долей достоверности предположить, что отечественный авторы имели в виду именно параметр ТСК.
Отечественные авторы в [1] приводят статистические показатели интенсивности отказов ПО λ. Приведём их в таблице 1.1.

Таблица 1.1

К сожалению, для какого языка ПО это действительно, авторы не сказывают. Кроме того, вводятся поправочные коэффициенты:

Таблица 1.2

И коэффициент, отражающий влияние времени работы программы:

Таблица 1.3

Тогда интенсивность отказов ПО λ определяется с помощью таблиц 1.1-1.3 по выражению:

λ по = λ* Кр* Кк* Кз* Ки (1.1)

Далее, используя экспоненциальную модель надёжности (при использовании данной модели поток отказов считается постоянным), можно получить ВБР ПО по стандартной формуле надёжности:

Количественная модель оценки надёжности ПО

В основе данной модели лежит моё предположение, что уровень надежности ПО зависит от объема ПО (в битах или тысячах строк кода). Это утверждение не противоречит классической теории надежности, согласно которой чем объект сложнее, тем ниже его надёжность. Логично же. Чем больше будет строк кода, тем больше в итоге будет ошибок и тем ниже будет вероятность безотказной работы программы.
Используем оценку количества ошибок в зависимости от языка разработки из статистической модели:

Далее, из [3] взята статистическая оценка связи количества строк кода и битов.
Для языка C, согласно [3] одна строка кода содержит 17 ± 3 байтов (146 битов) информации.

Зная V, объём кода ПО, в битах, мы можем получить число строк этого кода. Удобнее использовать параметр ТСК.

Используя данные таблицы 1.4 можно получить β, коэффициент количества ошибок на тысячу строк кода:

Объем ПО составляет 10 Мб. Язык разработки С++.
Тогда, согласно 1.3-1.4, β составит 0,08
Данный показатель очень близок к результату Примера 1.

Очевидно, чем дольше работает программа, тем выше вероятность, что она откажет.
Используя экспоненциальную модель надёжности (при использовании данной модели поток отказов считается постоянным), можно получить ВБР ПО:

Резюмируя, для того чтобы оценить надёжность программного обеспечения, необходимо знать его язык разработки (высокий или низкий) и объём кода ПО.

[1] Надёжность авиационных приборов и измерительно-вычислительных комплексов, В.Ю. Чернов/ В.Г. Никитин; Иванов Ю.П. – М. 2004.
[2] Надёжность и эффективность в технике: Справочник., В.С. Авдуевский. 1988.
[3] Estimating source lines of code from object code, L. Hatton. 2005.

Попробуйте теперь что-нибудь посчитать. Например, найдите надёжность программного обеспечения, объём которого 100 Мб, и которое должно проработать 100 часов. Важно! Обратите внимание, что λ при изменении объёма ПО каждый раз пересчитывается под конкретный размер ПО.

Валидация модели. Согласно этому сайту надёжность (вероятность безотказной работы) Windows 7 Home Premium составляет 0.98. Правда неизвестно, для какого времени работы сделан расчёт.

Если вы хотите хорошо разбираться в вопросах надежности техники и стать высокооплачиваемым специалистом, приглашаю вас пройти мой курс по обучению надёжности.

Источник

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

Показатели качества и надежности программных средств

Содержание

Основные положения

Формализации показателей качества программных средств посвящена группа нормативных документов. В международном стандарте ISO 9126:1991, при отборе минимума стандартизируемых показателей выдвигались и учитывались следующие принципы:

Выделены характеристики, которые позволяют оценивать ПС с позиции пользователя, разработчика и управляющего проектом. Рекомендуется 6 основных характеристик качества ПС, каждая из которых детализируется несколькими (всего 21) субхарактеристиками (рис.1):

Характеристики и субхарактеристики в стандарте определены очень кратко, без комментариев и рекомендаций по их применению к конкретным системам и проектам.

Эти факторы детализируются в совокупности 19 критериями качества на втором уровне. Дальнейшая детализация показателей качества представлена метриками и оценочными элементами, которых насчитывается около 240.

Каждый из них рекомендуется экспертно оценивать в пределах от 0 до 1. Состав используемых факторов, критериев и метрик предлагается выбирать в зависимости от назначения, функций и этапов жизненного цикла ПС.

В стандарте ГОСТ 28806-90 формализуются общие понятия программы, программного средства, программного продукта и их качества. Даются определения 18 наиболее употребляемых терминов, связанных с оценкой характеристик программ. Уточнены понятия базовых показателей качества, приведенных в стандарте 28195-89.

Функциональная пригодность

В процессе проектирования ПС атрибуты функциональной пригодности конкретизируются в спецификации на компоненты. Эти атрибуты можно численно представить:

Кроме них функциональную пригодность отражают множество различных специализированных критериев, которые тесно связаны с конкретными функциями программ. Их можно рассматривать как частные критерии или как факторы, влияющие на основные показатели. В наиболее общем виде функциональная пригодность проявляется в корректности и надежности ПС.

Корректность программы

Понятие корректной (правильной) программы может рассматриваться статически вне ее исполнения во времени. Корректность программы не определена вне области изменения исходных данных, заданных требованиями спецификации, и не зависит от динамики функционирования программы в реальном времени. Степень некорректности программ определяется вероятностью попадания реальных исходных данных в область, которая задана требованиями спецификации и технического задания (ТЗ), однако не была проверена при тестировании и испытаниях. Значения этого показателя зависят от функциональной корректности применяемых компонент и могут рассматриваться в зависимости от методов их достижения и оценивания:

При анализе видов корректности и способов их измерения, естественно, они связываются с видами и методами процесса тестирования и испытания программ.

Надежность программы

При оценке качества программ по показателям надежности регистрируются только такие искажения в процессе динамического тестирования с исполнением программ, которые приводят к потере работоспособности ПС или их крупных компонент. Первопричиной нарушения работоспособности программ при безотказности аппаратуры всегда является конфликт между реальными исходными данными, подлежащими обработке, и программой, осуществляющей эту обработку. Работоспособность ПС можно гарантировать при конкретных исходных данных, которые использовались при отладке и испытаниях. Реальные исходные данные могут иметь значения, отличающиеся от заданных техническим заданием и от использованных при применении программ. При таких исходных данных функционирование программ трудно предсказать заранее и весьма вероятны различные аномалии, завершающиеся отказами.

Непредсказуемость вида, места и времени проявления дефектов ПС в процессе эксплуатации приводит к необходимости создания специальных, дополнительных систем оперативной защиты от непредумышленных, случайных искажений вычислительного процесса, программ и данных. Системы оперативной защиты предназначены для выявления и блокирования распространения негативных последствий проявления дефектов и уменьшения их влияния на надежность функционирования ПС до устранения их первичных источников. Для этого в ПС должна вводиться временная, программная и информационная избыточность, осуществляющая оперативное обнаружение дефектов функционирования, их идентификацию и автоматическое восстановление (рестарт) нормального функционирования ПС. Надежность ПС должна повышаться за счет средств обеспечения помехоустойчивости, оперативного контроля и восстановления функционирования программ и баз данных. Эффективность такой защиты зависит от используемых методов, координированности их применения и выделяемых вычислительных ресурсов на их реализацию.

Классификация сбоев и отказов

Основным принципом классификации сбоев и отказов в программах при отсутствии их физического разрушения является разделение по временному показателю длительности восстановления после любого искажения программ, данных или вычислительного процесса, регистрируемого как нарушение работоспособности. При длительности восстановления, меньшей заданного порога, дефекты и аномалии при функционировании программ следует относить к сбоям, а при восстановлении превышающем по длительности пороговое значение, происходящее искажение соответствует отказу. Классификация программных сбоев и отказов по длительности восстановления приводит к необходимости анализа динамических характеристик абонентов, являющихся потребителями данных, обработанных исследуемым ПС, а также временных характеристик функционирования программ. Временная зона перерыва нормальной выдачи информации и потери работоспособности, которую следует рассматривать как зону сбоя, тем шире, чем более инертный объект находится под воздействием сообщений, подготовленных данным ПС. Пороговое время восстановления работоспособного состояния системы, при превышении которого следует фиксировать отказ, близко к периоду решения задач для подготовки информации соответствующему абоненту.

При нормальном темпе решения задач и выдаче их результатов потребителю, отклонения его характеристик от траектории, рассчитываемой ПС, находятся в допустимых пределах. Для любого потребителя информации существует допустимое время, отсутствия данных от ПС, при котором его характеристики, изменяясь по инерции, достигают предельного отклонения от значения, которое должно было бы быть рассчитано программами. Соответствующая этому отклонению временная зона перерыва выдачи информации потребителю позволяет установить границу допустимой длительности нарушения работоспособности, которая разделяет зоны сбоев и отказов.

Чем более инерционным является потребитель информации, тем больше может быть время отсутствия у него результатов функционирования и воздействий от ПС без катастрофических последствий нарушения работоспособности, соответствующего отказу. Это допустимое отклонение результатов после перерыва функционирования ПС зависит, в основном, от динамических характеристик источников и потребителей информации. Таким образом, установив в результате системного анализа динамических характеристик объектов информационной системы величину порогового значения, можно определить интервал времени функционирования ПС при отсутствии выдачи данных потребителю, которые разделяют события сбоя и отказа без физического разрушения программ.

Устойчивость и восстанавливаемость работоспособного состояния ПС

Надежность функционирования ПС наиболее широко характеризуется устойчивостью или способностью к безотказному функционированию и восстанавливаемостью работоспособного состояния после произошедших сбоев или отказов. В свою очередь устойчивость зависит от уровня неустраненных дефектов и ошибок и способности ПС реагировать на их проявления так, чтобы это не отражалось на показателях надежности. Последнее определяется эффективностью контроля данных, поступающих из внешней среды, и средств обнаружения аномалий функционирования ПС.

Показатели надежности ПС в значительной степени адекватны аналогичным характеристикам принятым для других технических систем. Наиболее широко используется критерий длительности наработки на отказ. Для определения этой величины измеряется время работоспособного состояния системы между последовательными отказами или началами нормального функционирования системы после них. Вероятностные характеристики этой величины в нескольких формах используются как разновидности критериев надежности. Критерий надежности восстанавливаемых систем учитывает возможность многократных отказов и восстановлений. Для оценки надежности таких систем, которыми чаще всего являются сложные ПС, кроме вероятностных характеристик наработки на отказ, важную роль играют характеристики функционирования после отказа в процессе восстановления.

Основным показателем процесса восстановления является длительность восстановления и ее вероятностные характеристики. Этот критерий учитывает возможность многократных отказов и восстановлений. Обобщение характеристик отказов и восстановлений производится в критерии коэффициент готовности. Этот показатель отражает вероятность иметь восстанавливаемую систему в работоспособном состоянии в произвольный момент времени. Значение коэффициента готовности соответствует доле времени полезной работы системы на достаточно большом интервале, содержащем отказы и восстановления.

Наработка на отказ

В реальных системах достигаемая при отладке и испытаниях наработка на отказ ПС обычно должна быть соизмерима с наработкой на отказ аппаратуры, на которой исполняется программа. Для систем обработки информации и управления в реальном времени наработка на отказ программ измеряется десятками и сотнями часов, а для особо важных или широко тиражируемых систем может достигать десятков тысяч часов. При достаточно развитом программном оперативном контроле и восстановлении наработка на отказоустойчивую ситуацию может быть на один-два порядка меньше, чем наработка на отказ. Реально очень трудно достичь наработку на отказоустойчивую ситуацию на уровне сотен часов и поэтому для получения высокой надежности программ невозможно ограничиваться тестированием и отладкой без использования средств рестарта. Априори невозможно обеспечить абсолютное отсутствие дефектов проектирования в сложных ПС, вследствие чего надежность их функционирования имеет всегда конечное, ограниченное значение.

Непредусмотренные при проектировании ситуации и ошибки функционирования программ и данных могут быть потенциальными источниками катастроф при применении таких ПС, влияющими на технологическую безопасность их функционирования. Наиболее полно технологическая безопасность ПС характеризуется величиной ущерба, возможного при проявлении дестабилизирующих факторов и реализации конкретных угроз, а также средним временем между проявлениями непредумышленных угроз, нарушающих надежность и безопасность. Однако описать и измерить в достаточно общем виде возможный ущерб при нарушении безопасности для критических ПС разных классов практически невозможно. Поэтому реализации угроз целесообразно характеризовать интервалами времени между их проявлениями, нарушающими безопасность применения ПС, или наработкой на отказы, отражающиеся на безопасности. Это сближает понятия и характеристики технологической безопасности с показателями надежности ПС.

Часто ущерб вследствие отказов имеет кумулятивный характер и проявляется в более или менее систематических отказах, каждый из которых отражается на надежности, но не является катастрофой. Накопление таких отказов со временем может давать последствия, нарушающие безопасность применения ПС. При более или менее одинаковых источниках непредумышленных угроз и их проявлениях понятия надежности и технологической безопасности можно разделить по величине последствий и ущерба при возникновении отказов.

Применение основных понятий теории надежности для оценки сложных ПС позволяет получить ряд четких хорошо измеряемых интегральных показателей качества программ. Приведенные критерии используются в основном при испытании ПС и на завершающих фазах комплексной отладки. Их практически невозможно использовать для оценки качества программных модулей и групп программ, решающих частные функциональные задачи вне реального времени и без непосредственного взаимодействия с внешней средой.

Источник

13 Надежность программного обеспечения

Тема: Надежность программного обеспечения информационных систем

1. Основные понятия и определения надежности программного обеспечения.

2. Показатели надежности программного обеспечения.

3. Причины отказов программного обеспечения, признаки появления ошибок.

4. Способы обеспечения и повышения надежности программ.

Рекомендуемые файлы

Надежность программного обеспечения, ПО, отказ, скрытые ошибки, спецификация, корректность программы, контроль ПО, логические ошибки, ошибки ввода-вывода, сбой, резервирование программ, ошибки манипулирования.

Основные понятия надежности ПО

Надежность работы вычислительной аппаратуры следует рассматривать совместно с программным обеспечением как надежность вычислительного процесса.

Под надежностью программного обеспечения (ПО) будем понимать свойство программы выполнять заданные функции, сохранять свои характеристики в установленных переделах при определенных условиях эксплуатации.

Надежность ПО определяется его безотказностью и восстанавливаемостью.

Безотказность программы или программного обеспечения есть его (ее) свойство сохранять работоспособность при использовании в процессе обработки информации на компьютере.

Безотказность ПО можно оценивать вероятностью его работы без отказов при определенных условиях внешней среды в течении заданного времени наблюдения.

Безотказность программного средства можно также характеризовать средним временем между возникновениями отказов в функционировании программы. При этом предполагается, что аппаратура компьютера находится полностью в работоспособном состоянии.

С точки зрения надежности принципиальное отличие ПО от аппаратуры состоит в том, что программы не изнашиваются и, следовательно, не выходят из строя из-за поломки.

Безотказность ПО определяется его корректностью (правильностью) и, следовательно, целиком зависит от наличия в нем ошибок, внесенных на этапах его создания. В то время как безотказность аппаратуры определяется в основном случайными отказами, зависящими от изменений параметров аппаратуры во время эксплуатации.

Механизм возникновения отказа аппаратуры и отказа ПО существенно отличаются друг от друга. Отказ аппаратуры обусловлен разрушением каких-либо элементов аппаратуры. Отказ ПО обусловлен несоответствием ПО поставленным задачам.

Несоответствие может возникать по двум причинам: либо разработчиком программы допущено нарушение спецификации – технических требований к программе, либо спецификация неточная или неполная.

Корректность программы – ее соответствие спецификации.

Важной характеристикой надежности ПО является его восстанавливаемость, которая определяется затратами времени и труда не устранение отказа из-за проявившейся ошибки в программе и его последствий.

Восстановление после отказа в программе может заключаться в корректировке и восстановлении текста программы, исправлении данных, внесении изменений в организацию вычислительного процесса.

Восстанавливаемость ПО может быть оценена средней продолжительностью устранение ошибки в программе и восстановления ее работоспособности. Восстанавливаемость ПО зависит от многих факторов: от сложности структуры комплекса программ, алгоритмического языка, на котором разрабатывалась программа, стиля программирования, качества документации на программу и т.д.

Причины отказов программного обеспечения

Основными причинами непосредственно вызывающими нарушение нормального функционирования программы, являются [1, 2, 3, 10, 11]:

1. ошибки, скрытые в самой программе;

2. искажения входной информации, подлежащей обработке;

3. неверные действия пользователя;

4. неисправность аппаратуры установки, на которой реализуется вычислительный процесс.

1. Скрытые ошибки программы являются главным фактором нарушения нормальных условий его функционирования;

Можно выделить следующие основные ошибки в программе:

· Ошибки вычислений – ошибки данного класса содержаться в закодированных математических выражениях или получаемых с их помощью результатах. Примерами таких ошибок является неверное преобразование типов переменных, неверный знак операции, ошибка в выражении индекса, переполнение или потеря значимости при вычислениях.

· Логические ошибки – являются причиной искажения алгоритма решения задачи. Такого рода ошибки возникают в связи с неверной передачей управления, неверном задании диапазона изменения параметров цикла, неверных условий и т.д.

· Ошибки ввода-вывода – связаны с такими действиями, как управление вводом-выводом, формирование выходных записей и определение размеров записей.

· Ошибки манипулирования данными – примерами таких ошибок являются неверно определенное число элементов данных, неверные начальные значения, присвоенные данным, неверно указанная длина операнда, имя переменной и т.д.

Ошибки совместимости связанны с отсутствием совместимости с операционной системой или другими прикладными программами используемыми в данной программе.

Ошибки сопряжений вызывают неверное взаимодействие программы с другими программами (подпрограммами), с системными программами, устройствами компьютера, входными данными и т.д.

В качестве примеров ошибок сопряжения можно привести – несовместимость аргументов и параметров подпрограммы, нарушение синхронизации при синхронном выполнении программы и т.д.

Причинами искажения вводимой информации могут быть, например, следующие:

· искажения данных на первичных носителях информации;

· сбои и отказы в аппаратуре ввода данных с первичных носителей информации;

· шумы и сбои в каналах связи при передачи сообщений по линиям связи и т.д.

3. Неверные действия пользователя, приводящие к отказу в процессе функционирования ПО связаны, прежде всего, с неправильной интерпретацией сообщений, неправильными действами пользователя в процессе диалога с компьютером и т.д.

4. Неисправность аппаратуры – неисправности, возникающие при работе аппаратуры, используемой для реализации вычислительного процесса, оказывают влияние на характеристику надежности ПО. Появление отказа или сбоя в работе аппаратуры приводит к нарушению нормального хода вычислительного процесса и во многих случаях к искажению данных и текстов программ в основной и внешней памяти.

Признаки появления ошибок

Наиболее типичными симптомами появления ошибок в программе являются:

· преждевременное окончание выполнения программы;

· недопустимое увеличение времени некоторой последовательности команд одной из программ;

· полная потеря или значительное искажение накопленных данных, необходимых для успешного выполнения решаемых задач;

· нарушение последовательности вызова отдельных программ, в результате чего происходит пропуск необходимых программ;

· искажение отдельных элементов данных (входных, выходных, промежуточных) в результате обработки искаженной исходной информации.

Способы обеспечения и повышения надежности программ

Они определены на следующие основные категории:

1. усовершенствование технологии программирования;

2. выбор алгоритмов, не чувствительных к различного рода нарушениям вычислительного процесса (использование алгоритмической избыточности);

4. контроль и тестирование программ с последующей коррекцией.

Выбор алгоритмов, не чувствительных к нарушениям вычислительного процесса, основан на исследовании их чувствительности. Мерой чувствительности могут являться погрешности, вызванные этими нарушениями.

Результаты вычислений искажаются погрешностями:

· исходных данных, трансформированными в ходе вычислений:

· обусловленными отказами, сбоями и ошибками в программе.

Контрольные вопросы и задания

1. Что понимается под надежностью программного обеспечения (ПО)?

2. Что такое корректность ПО?

3. От чего зависит восстанавливаемость ПО компьютера и КС?

4. Определите основные причины отказов ПО.

5. Какие существуют пути повышения надежности ПО компьютеров и КС?

6. Почему при мультипрограммной обработке информации используют принцип виртуальных машин?

7. Какой из способов обеспечения надежности программ считается более эффективным?

8. Что значит «усовершенствование технологии программирования»?

10. Как оценить вероятность безотказной работы программ?

11. Что означает термин «алгоритмическая избыточность»?

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • Что такое нагрузочное тестирование программного обеспечения
  • что такое набросок на фрагменте экрана в windows 10 и для чего он нужен
  • что такое набор твиков реестра windows 10
  • что такое набор данных в программировании
  • Что такое муниципальные целевые программы

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии