Низкоуровневые языки программирования: определение и список примеров
«1» — подача электрического импульса на процессо р ;
«0» — отсутствие электрического импульса.
Низк о уровневые языки программирования
Низкоуровневые языки программирования — это такие языки, при помощи которых есть возможность «напрямую» обращаться к аппаратному функционалу компьютера:
к оперативной памяти;
драйвер ы для периферийных устройств;
Но не нужно полагать, что они применяются только в эти х сферах. Низкоуровневый язык присутствует в каждом компьютере, потому что его использовали при написании драйверов, ядер и операционных систем.
Низкоуровневые и высокоуровневые языки программирования
Говоря о низкоуровневых языках программирования, нужно несколько слов сказать о высокоуровневых языках.
Программирование на языке низкого уровня требует от разработчика высокой квалификации, но самое главное — понимание аппаратных процессов, происходящих внутри компьютера.
Низкоуровневые языки: список представителей
Язык ассемблера — это не какой-то конкретный низкоуровневый язык программирования. За этим термином скрываются принципы создания нового синтаксиса для управления процессорами в разных архитектурах. Язык ассемблера представляет собой более функциональный и понятный синтаксис по сравнению с машинным кодом. При помощи ассемблера можно воздействовать на все процессы, происходящие внутри компьютера. Его синтаксис все равно остается очень сложным, по сравнению с другими низкоуровневыми языками и тем более с языками высокого уровня.
Есть такие языки, которые являются «гибкими» или «среднеуровневыми», то есть они могут быть как высокоуровневыми, так и низкоуровневыми. К таким языкам относят С, С++, RUST и др. Почему так происходит? К языкам низкого уровня относят те языки, которые могут «напрямую» обращаться к аппаратным возможностям компьютера, например к процессору. «Гибкие» языки подходят под это определение. Поэтому их можно встретить в операционных системах и драйверах, где применяются языки низкого уровня. Но также можно встретить в разнообразных приложениях и играх, где применяются языки высокого уровня.
Заключение
Низкоуровневые языки программирования лежат в основе всего программирования. С их помощью пишут операционные системы, без которых не работает ни один современный компьютер.
Если рассматривать низкоуровневые языки в качестве первого языка для изучения, тогда лучше смотреть в сторону «гибких» языков типа С или С++, которые можно применять и в других сферах программирования, а не только в низкоуровневых процессах.
по какому принципу работает процессор;
как работает оперативная память;
как распределяются ресурсы компьютера между процессами и потоками;
При высокоуровневом программировании о низкоуровневых процессах задумываться не надо.
Мы будем очень благодарны
если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.
Что такое низкоуровневый язык программирования
Университет Низкоуровневого Программирования
Вдохновляясь google-interview-university, мне бы хотелось поделиться опытом и показать путь к становлению программистом низкого уровня, потому что соответствующие навыки перестали быть столь обыденными, каковыми были раньше. К тому же, многие учащиеся и просто новички часто меня сами спрашивают, как стать низкоуровневым программистом и разработчиком ядра Linux в частности.
Очевидно, что на одной странице нельзя указать каждую ссылку/книгу/курс. То есть, хоть эта страница и представляет читателю Arduino, на ней нет более детальной информации о ней и встраиваемых системах. Идти дальше необходимо самому. Имея ключевое слово «Arduino», можно воспользоваться поисковыми сервисами, купить кит и начать делать с ним что-нибудь самому, а не просто собирать ссылки и бесплатные книги. Прошу помнить, что вся эта страница является лишь путеводителем для новичков.
Прим. переводчика: не для всех ссылок и книг существует русский аналог или перевод. Тех, что нашел, должно быть достаточно для начала пути, но, в любом случае, английский язык является необходимым навыком для успешного развития своих навыков в данной сфере. Поэтому к оригинальным совета добавлю от себя: учи английский.
Что значит «низкоуровневый»?
Я определяю низкоуровневое программирование как очень близкое к устройству, используя низкоуровневые языки программирования, такие как C или ассемблер, на контрасте с высокоуровневым программированием, типичного для приложений в user-space, использующим языки высокого уровня (такие как Python, Java).
Да, системное программирование является очень близким по смыслу концептом к низкоуровневому программированию. Но эта страница также включает проектирование аппаратных средств и разработку прошивок, которые не входят в понятие системного программирования.
Наконец, эта страница включает темы от аппаратных компонентов до ядра Linux. Между ними невероятно большое число слоев. Документ на одну страницу никогда не сможет покрыть детали каждого из них, поэтому его целью является лишь дать точку входа в мир низкоуровневого программирования.
Низкоуровневое программирование базируется на двух теориях:
Позволь мне представить несколько книг, которые я читал. Они широко используются в качестве учебников в университетах. Если их нет или не было у читателя в университете, то стоит потратить немного времени на ознакомление.
Список хороших книг бесконечен. Не хочу сказать, что нужно перемолоть множество книг: достаточно и одной, но прочитанной внимательно. Когда бы ты не учил теорию, попробуй свои силы в ее реализации. Одна практическая реализация лучше, нежели знание сотни теорий
Выбери один, х68 или ARM. Нужды знать оба нет смысла. Не имеет смысла даже знать сам язык по себе. Суть состоит в понимании внутренности процессора и компьютера в целом. То есть, нет нужды практиковаться в ассемблере самой последней модели. Выбери 8086 или Cortex-M.
Тут коротких путей нет. Просто читай всю книгу и решай все упражнения.
Если хочешь стать экспертном в программировании на C, посети https://leetcode.com/. Удачи!
Если хочешь стать системным инженером встраиваемых систем, то лучше начать с простых kit’ов для разработки, нежели с последнего чипсета ARM.
К этому моменту, можно приступать к последним процессорам архитектур ARM и x86.
Для примера, плата Raspberry Pi имеет процессор Cortex-A53, поддерживающий 64-битный набор инструкций. Это позволяет получить опыт в работе с современной процессорной архитектуры с помощью rPi. Да, его можно купить. но. что ты собираешься с ним делать? Если нет целевого проекта, скорее всего ты просто положишь плату в дальний ящик и забудешь о ней как и обо всех других, купленных до этого.
Поэтому, я рекомендую следующий проект.
Я сделал игрушечное ядро, поддерживающее 64-битный «длинный» режим, подкачку страниц и очень простое переключение контекста. создания ядра является хорошим способом понять архитектуру современного компьютера и управление «железом».
Вообще говоря, у тебя уже есть доступ к последнему процессору и последним аппаратным устройствам. Твой ноутбук! Твой ПК! Ты уже имеешь все необходимое для старта! Не нужно ничего покупать. QEMU может эмулировать последние процессоры ARM и x86. То есть, все необходимое на руках. Существует множество игрушечных ядер и документации для справки. Просто установи QEMU эмулятор и создай микро-ядро, которое способно загрузиться, включить подкачку и вывести текстовые сообщения.
Другие игрушечные ядра:
Ядро Linux и драйвера устройств
Не нужно создавать свою полноценную операционную систему. Присоединйяся к сообществу Linux и участвуй в разработке.
Посмотри здесь, если понадобится что-то еще
Да, ты можешь быть и не заинтересован в линуксе и прошивках. Если так, то можно найти и другие сферы:
У меня нет каких-либо знаний в данных сферах. Поэтому прошу отправить мне любую информацию о них для новичков.
Будущее низкоуровневого программирования
Мне неизвестно будущее, но я посматриваю на RUST.
IoT теперь уже является трендом, поэтому стоит посмотреть на ОС для него. ARM, Samsung и некоторые другие компании имеют свои собственные ОС реального времени, но, к сожалению, многие из них имеют закрытый исходный код. Но Linux Foundation также имеет свое решение: Zephyr
Обычные облачные сервера имеют множество слоев; в частности, хостовую ОС, драйвер kvm, процесс qemu, гостевая ОС и сервисное приложение. Контейнер был создан, чтобы предоставить легку. виртуализацию. В ближайшем будущем, новый концепт ОС, так называемый «библиотечная ОС» или Unikernel, может заменить типичный стэк SW для виртуализации.
Big data и облачные вычисления требуют хранения все больших и больших объемов данных. Некоторые диски, напрямую подключенные к серверам, не могут удовлетворить требующуюся емкость, стабильность и производительность. Поэтому были проведены исследования для создания больших систем хранения данных с помощью множества машин, соединенных высокоскоростной сетью. Поначалу они были сфокусированы на создании одного большого тома-хранилища. Но теперь предлагаю множества томов, выделенных для множества виртуальных машин.
Присылайте мне pull-реквесты, если хотите перевести эту страницу. Я перечислю их здесь.
Вдохновляясь google-interview-university, мне бы хотелось поделиться опытом и показать путь к становлению программистом низкого уровня, потому что соответствующие навыки перестали быть столь обыденными, каковыми были раньше. К тому же, многие учащиеся и просто новички часто меня сами спрашивают, как стать низкоуровневым программистом и разработчиком ядра Linux в частности.
Для информации, у меня более 10 лет опыта в качестве низкоуровневого программиста, мой опыт включает:
Низкоуровневые и высокоуровневые языки программирования.
Языки низкого уровня
Первым компьютерам приходилось программировать двоичными машинными кодами. Однако программировать таким образом – достаточно трудоемкая и сложная задача.
Для упрощения этой задачи стали появляться языки программирования низкого уровня, которые позволяли задавать машинные команды в более понятном для человека виде.
Для преобразования их в двоичный код были созданы специальные программы – трансляторы.
Трансляторы делятся на:
Примером языка низкого уровня является ассемблер. Языки низкого уровня ориентированы на конкретный тип процессора и учитывают его особенности, поэтому для переноса программы на ассемблере на другую аппаратную платформу ее нужно почти полностью переписать.
Языки низкого уровня, как правило, используют для написания небольших системных программ, драйверов устройств, модулей стыков с нестандартным оборудованием, программирование специализированных микропроцессоров, когда важнейшими требованиями являются компактность, быстродействие и возможность прямого доступа к аппаратным ресурсам.
Языки высокого уровня
Данный вид языков более понятен человеку, чем компьютеру. Особенности конкретных компьютерных архитектур в них не учитываются, поэтому созданные программы легко переносятся с компьютера на компьютер.
В основном достаточно просто перекомпилировать программу под определенную компьютерную архитектурную и операционную систему.
Разрабатывать программы на таких языках гораздо проще и ошибок допускается меньше. Значительно сокращается время разработки программы, что особенно важно при работе над большими программными проектами.
К языкам программирования высокого уровня относятся:
Достоинства языков программирования высокого уровня:
Недостатком языков высокого уровня является больший размер программ по сравнению с программами на языке низкого уровня. Поэтому в основном языки высокого уровня используются для разработок программного обеспечения компьютеров и устройств, которые имеют большой объем памяти.
Уровни языков программирования: краткий обзор
Рассказываю о том, почему языки программирования делятся на уровни, что эти уровни обозначают и с какого уровня стоит начинать обучение.
Язык программирования – это набор инструкций, с помощью которых можно передавать команды процессору и тем самым управлять компьютером. Существует множество языков со своим специфичным синтаксисом и все они позволяют вносить изменения в данные, хранящиеся на компьютере, менять контент, отображающийся на экране, запускать приложения, производить вычисления и т.п.
Разные языки программирования на разных уровнях взаимодействуют с компьютером, потому что машина не понимает английский (или любой другой человеческий язык), и для взаимодействия с ним используется специальная система из нулей и единиц. Но развитие технологий привело к созданию новых языков и деление их на уровни.
Низкоуровневые языки
Как я уже отметил выше, компьютер не умеет разговаривать по-английски. Общение с машиной происходит при помощи нулей и единиц. Мы буквально подаем ток на определенные транзисторы, чтобы превращать импульсы тока в слова, изображения на экране компьютера, сложные программы и видеоигры. Это наиболее рациональный с точки зрения производительности вариант взаимодействия с процессором, потому, используя двоичную систему, вы передаете команды напрямую: управляете памятью, перемещаете данные и т.п.
Но есть низкоуровневые языки, которые немного упрощают процесс общения с «железом» за счет преобразования часто используемых команды из 1011 в более удобоваримые директивы в духе MOV, AAD.
Такие языки строго оптимизируются под конкретные чипы и работают только на тех архитектурах, под которые они изначально разрабатывались.
Машинный язык
Это единственный язык, который понимает компьютер без какой-либо предобработки. Сейчас программисты его не используют, потому что он слишком сложный в восприятии. Есть масса более понятных аналогов, выполняющих те же функции, в то время как машинный язык очень сложный, требует куда больше времени и внимательности от специалиста и вообще никак не помогает в создании новых программ, а только усложняет эту задачу.
Машинный язык – это информация в чистом виде, зачастую представляющая собой набор чисел в двоичной системе исчисления (иногда используются десятичные и другие варианты). Разработчики должны прописывать каждую команду с помощью заранее предусмотренных запросов, четко следуя правилам написания инструкций для конкретного чипа, с которым работает программист.
Написанный машинный код передается в загрузчик программ напрямую, обычно игнорируя любые посреднические программные слои.
Языки ассемблера
Это первый уровень абстракции от машинного языка. Первая надстройка, упрощающая восприятие программного кода и помогающая разработчикам писать более стабильные приложения, практически не теряя в производительности.
Синтаксис языка ассемблера состоит не из нулей и единиц (и даже не из цифр с буквенными значениями, как в десятичной системе), а из вполне читаемых директив, которые похожи на сокращенные английские слова. Например MOV вместо 1011 отвечает за перемещение данных из одного регистра в другой.
Каждый язык ассемблера поставляется с собственным переводчиком, превращающим директивы на английском языке в директивы, которые умеет читать компьютер, то есть в машинный код. Этот переводчик называют ассемблером. И это одна из причин, почему ПО, написанное с использованием ассемблера работает медленнее, – компьютеру требуется время на перевод.
Уровень абстракции языка ассемблера довольно посредственный, потому что информация, которой манипулирует разработчик, хранится в регистрах процессора (специальных ячейках, где может храниться определенный объем данных), из-за чего формируется тесная взаимосвязь между написанным кодом и используемым железом. Без больших затрат по времени ретранслировать этот код под другую платформу или операционную систему не получится.
В отличие от машинного языка, язык ассемблера используется даже в современной разработке. В частности, для создания ПО, требующего очень высокой производительности, низкоуровневых системных компонентов или драйверов для аппаратной части устройств.
Краткое сравнение ассемблера и машинного языка
Машинный код
Язык ассемблера
Нулевой уровень абстракции. Полный контакт с аппаратной составляющей компьютера
Первый уровень абстракции. Есть прослойка в виде переводчика-ассемблера
Трудно понять, что написано в коде
Код больше похож на человеческий язык
Для запуска не нужны дополнительные инструменты
Требуется ассемблер для превращения кода в машинный язык
Синтаксис состоит из нулей и единиц
Синтаксис состоит из английских слов
Высокоуровневые языки
Машинный код сложен для восприятия, и это порождает две большие проблемы в разработке:
Чтобы научиться программировать, нужно потратить много времени на изучение разных директив и понять, как они взаимодействуют друг с другом и с физическими компонентами компьютера.
Синтаксис машинного кода настолько мудреный, что писать программы, не допуская ошибок, почти нереально. Нужно быть крайне внимательным.
В связи с этим инженеры начали создавать дополнительные уровни абстракций для машинного языка, чтобы люди могли выполнять те же операции, но манипулируя куда более понятными для них структурами, отсекая часть задач, ранее возложенных на программиста, и передавая их специализированным компьютерным утилитам.
Высокоуровневые языки куда ближе к английскому языку, чем язык ассемблера и машинный код. Поэтому его проще воспринимать, и новые поколения программистов начали расти куда быстрее за счет использования более простых конструкций в коде.
Особенности высокоуровневых языков
Код, написанный на высокоуровневом языке, впоследствии трансформируется в машинный код при помощи специальных утилит: компиляторов и интерпретаторов. Первый трансформирует программу в понятную для компьютера еще до запуска, а второй делает это постепенно – строка за строкой.
Такой подход позволил создать множество уникальных синтаксисов и надстроек. Каждый вариант позволяет выполнять свои задачи по-разному, взаимодействуя с железом.
Взаимодействуя с высокоуровневыми языками, программист переходит на управление абстрактными структурами. На смену регистрам, адресам памяти и запросам в стек (это список команд, если выражаться максимально примитивно) приходят объекты, массивы данных, переменные, булевы выражения, функции, циклы и другие сущности, знакомые современным разработчикам.
Частицы кода больше напоминают прикладные и «осязаемые» элементы, в которые проще уложить логику сложных современных приложений и веб-сайтов.
Плюсы высокоуровневых языков
Главный плюс – абстракция. Современные разработчики не обязаны знать, как устроен компьютер и как с ним общаться с помощью нулей и единиц. Они могут создавать продвинутые приложения без глубоких познаний в области информатики.
Помимо низкого порога вхождения, высокоуровневые языки обеспечивают более богатый арсенал инструментов. В их числе специальные модули для автоматического выявления ошибок в коде и объединения нескольких видов технологий в одну рабочую среду (несколько фреймворков, сборщики по типу Webpack и т.п.).
ПО стало портативным. Одну базу кода можно использовать сразу на нескольких платформах. Мощные интерпретаторы в полуавтоматическом режиме превращают код на одном языке в код для нескольких отличающихся друг от друга ОС.
Минусы высокоуровневых языков
Низкая производительность. Чем выше уровень абстракции, тем больше времени и ресурсов компьютера тратится на «перевод» одного языка в другой. Поэтому некоторые приложения, даже будучи не слишком функциональными, долго загружаются или работают нестабильно.
Не особо смышленые программисты. Многие разработчики не углубляются в теоретическую базу и остаются на уровне своего языка, что сильно ограничивает их кругозор и не позволяет расти с профессиональной точки зрения. Притупляется внимание, страдают навыки поиска и инженерное мышление.
Избыточное внимание к инструментам. Количество дополнительных слоев абстракции становится избыточным. Регулярно появляются новые фреймворки, редакторы кода, дополнительные вспомогательные приложения, языки, стандарты и т.п. Фокус часто смещается с создания хороших программ на перебор утилит и споры о том, какие из них работают лучше.
Популярные высокоуровневые языки программирования
Их уже довольно много:
C – язык общего назначения, лежащий в основе десятков других языков.
C++ – расширенная версия C. До сих пор в почете и используется в разработке сложных приложений, например музыкальных плагинов и редакторов кода.
Java – мультипрофильный язык, который позволяет запускать единожды написанный код на десятках устройств и систем.
Python – простой в освоении язык общего назначения с «аккуратным» синтаксисом и большим количеством расширений.
JavaScript – скриптовый язык, выросший из эксклюзивной веб-технологии в мощный язык для создания приложений, игр, IDE даже других языков.
Естественно, языков в десятки раз больше, но на всех в этой статье места не хватит. Если интересно, почитайте статью на Википедии со списком всех известных языков программирования.
Степень высокоуровневости
Относительность термина «высокоуровневый» возникла в связи с избыточным ростом количества языков программирования. Причем многие из них базировались друг на друге и семимильными шагами повышали уровень абстракции.
Некоторые языки считаются более низкоуровневыми, чем другие, даже в пространстве высокоуровневых. Например, C++ более тесно взаимодействует с «железом», а потому нередко именуется низкоуровневым языком, хотя таковым и не является.
А все потому что появились языки в духе JavaScript, которые еще больше отдаляют программистов от аппаратных компонентов и создают тепличные условия, в которых разработка все меньше походит на хардкорную борьбу с машиной 30 лет назад.
Также низкоуровневыми начали называть языки, в которых по умолчанию не встроены дополнительные инструменты, облегчающие процесс создания ПО, например «сборщики мусора».
Краткое сравнение высокоуровневых и низкоуровневых языков
Низкоуровневые
Высокоуровневые
Наиболее понятный для компьютера язык с синтаксисом из нулей и единиц или простых команд для взаимодействия напрямую с «железом» компьютера
Наиболее понятный для человека язык. Больше напоминает английский
Позволяет создавать более производительный код.
Генерирует код, который требует больше ресурсов и времени для запуска
Даже при использовании языка ассемблера перевод происходит единожды самим ассемблером
Требует наличие компилятора или интерпретатора для преобразования человекоудобного кода в машинный код
Создает код, который работает на конкретном устройстве
Создает портативный код, который можно запускать на разных устройствах
Эффективен с точки зрения использования памяти
Менее эффективен с точки зрения использования памяти
Поиск и устранение ошибок занимают много времени
Есть инструменты для быстрого автоматического отлова ошибок
Что учить и зачем?
Если вы только начинаете свой путь в мире разработки, то сразу бросаться в языки ассемблера и уж тем более машинный код не стоит. Программирование – тема сложная, и лучше начинать с определенного уровня абстракции. Хотя бы C++, но куда лучше подойдет Python. Последний поможет понять базовые концепции и выучить простейшие алгоритмы. А дальше у вас будет два пути:
Выбрать один из высокоуровневых языков в зависимости от того, какое программное обеспечение вы хотите создавать и для каких операционных систем.
Начать углубленное изучение низкоуровневых языков, чтобы в дальнейшем создавать драйверы и микропрограммы для чипов.
Вместо заключения
Низкоуровневые и высокоуровневые языки хоть и разные, но отлично уживаются в современном мире, выполняя задачи, возложенные конкретно на них. Благодаря повышению уровня абстракции был создан весь современный цифровой мир, поэтому корить разработчиков за то, что они используют только условный Objective-C и игнорируют машинный код, нелепо. Но и совсем отрицать важность изучения основ тоже глупо. Чтобы быть хорошим специалистом, нужно поддерживать баланс и изучать программирование со всех сторон.

