Сокеты¶
Сокеты (англ. socket — разъём) — название программного интерфейса для обеспечения обмена данными между процессами. Процессы при таком обмене могут исполняться как на одной ЭВМ, так и на различных ЭВМ, связанных между собой сетью. Сокет — абстрактный объект, представляющий конечную точку соединения.
Принципы сокетов¶
Каждый процесс может создать слушающий сокет (серверный сокет) и привязать его к какому-нибудь порту операционной системы (в UNIX непривилегированные процессы не могут использовать порты меньше 1024). Слушающий процесс обычно находится в цикле ожидания, то есть просыпается при появлении нового соединения. При этом сохраняется возможность проверить наличие соединений на данный момент, установить тайм-аут для операции и т.д.
Каждый сокет имеет свой адрес. ОС семейства UNIX могут поддерживать много типов адресов, но обязательными являются INET-адрес и UNIX-адрес. Если привязать сокет к UNIX-адресу, то будет создан специальный файл (файл сокета) по заданному пути, через который смогут сообщаться любые локальные процессы путём чтения/записи из него (см. Доменный сокет Unix). Сокеты типа INET доступны из сети и требуют выделения номера порта.
Обычно клиент явно подсоединяется к слушателю, после чего любое чтение или запись через его файловый дескриптор будут передавать данные между ним и сервером.
Основные функции¶
| Общие | |
| Socket | Создать новый сокет и вернуть файловый дескриптор |
| Send | Отправить данные по сети |
| Receive | Получить данные из сети |
| Close | Закрыть соединение |
| Серверные | |
| Bind | Связать сокет с IP-адресом и портом |
| Listen | Объявить о желании принимать соединения. Слушает порт и ждет когда будет установлено соединение |
| Accept | Принять запрос на установку соединения |
| Клиентские | |
| Connect | Установить соединение |
socket()¶
Создаёт конечную точку соединения и возвращает файловый дескриптор. Принимает три аргумента:
domain указывающий семейство протоколов создаваемого сокета
type
protocol
Протоколы обозначаются символьными константами с префиксом IPPROTO_* (например, IPPROTO_TCP или IPPROTO_UDP). Допускается значение protocol=0 (протокол не указан), в этом случае используется значение по умолчанию для данного вида соединений.
Функция возвращает −1 в случае ошибки. Иначе, она возвращает целое число, представляющее присвоенный дескриптор.
Связывает сокет с конкретным адресом. Когда сокет создается при помощи socket(), он ассоциируется с некоторым семейством адресов, но не с конкретным адресом. До того как сокет сможет принять входящие соединения, он должен быть связан с адресом. bind() принимает три аргумента:
Возвращает 0 при успехе и −1 при возникновении ошибки.
Автоматическое получение имени хоста.
listen()¶
Подготавливает привязываемый сокет к принятию входящих соединений. Данная функция применима только к типам сокетов SOCK_STREAM и SOCK_SEQPACKET. Принимает два аргумента:
После принятия соединения оно выводится из очереди. В случае успеха возвращается 0, в случае возникновения ошибки возвращается −1.
accept()¶
Используется для принятия запроса на установление соединения от удаленного хоста. Принимает следующие аргументы:
Функция возвращает дескриптор сокета, связанный с принятым соединением, или −1 в случае возникновения ошибки.
connect()¶
Устанавливает соединение с сервером.
Некоторые типы сокетов работают без установления соединения, это в основном касается UDP-сокетов. Для них соединение приобретает особое значение: цель по умолчанию для посылки и получения данных присваивается переданному адресу, позволяя использовать такие функции как send() и recv() на сокетах без установления соединения.
Загруженный сервер может отвергнуть попытку соединения, поэтому в некоторых видах программ необходимо предусмотреть повторные попытки соединения.
Возвращает целое число, представляющее код ошибки: 0 означает успешное выполнение, а −1 свидетельствует об ошибке.
Передача данных¶
Для передачи данных можно пользоваться стандартными функциями чтения/записи файлов read и write, но есть специальные функции для передачи данных через сокеты:
Нужно обратить внимание, что при использовании протокола TCP (сокеты типа SOCK_STREAM) есть вероятность получить меньше данных, чем было передано, так как ещё не все данные были переданы, поэтому нужно либо дождаться, когда функция recv возвратит 0 байт, либо выставить флаг MSG_WAITALL для функции recv, что заставит её дождаться окончания передачи. Для остальных типов сокетов флаг MSG_WAITALL ничего не меняет (например, в UDP весь пакет = целое сообщение).
Основы программирования TCP-сокетов на Java
Jul 2, 2020 · 4 min read
Клиент-серверная архитектура — наиболее распространенная структура приложений в Интернете. В этой архитектуре клиенты (т.е. персональные компьютеры, устройства Интернета вещей и т. д.) сначала запрашивают ресурсы с сервера. Затем сервер отправляет обратно соответствующие ответы на запросы клиентов. Чтобы это произошло, должен быть какой-то механизм, реализованный как на стороне клиента, так и на стороне сервера, который поддерживает эту сетевую транзакцию. Этот механизм называется коммуникацией посредством сокетов.
Почти каждое приложение, которое пол а гается на сетевые операции, такие как извлечение данных с удаленных серверов и загрузка файлов на сервер, широко использует сокеты “под капотом”. Несколько примеров таких приложений — браузеры, чат-приложения и одноранговые сетевые приложения.
В этой статье мы более подробно рассмотрим сокеты и простую клиент-серверную реализацию с использованием сокетов в Java.
Что такое сокет?
Сокет — это программная (логическая) конечная точка, устанавливающая двунаправленную коммуникацию между сервером и одной или несколькими клиентскими программами. Сокет — это нечто “программное”. Другими словами, сокет не существует на физическом уровне. Прикладное программное обеспечение определяет сокет так, чтобы он использовал порты на основном компьютере для его реализации. Это позволяет программистам комфортно работать с низкоуровневыми деталями сетевых коммуникаций, такими как порты, маршрутизация и т. д., внутри прикладного кода.
Как работают сокеты?
TCP-сокет устанавливает связь между клиентом и сервером в несколько этапов.
На каждой из перечисленных выше стадий коммуникации сокетов “под капотом» происходит много всего сложного. Однако этих знаний вполне достаточно для понимания и демонстрации того, как работает коммуникация посредством TCP-сокетов.
К настоящему времени мы уже достаточно знаем о TCP-сокетах. Давайте теперь посмотрим на них в действии.
Реализация коммуникации посредством TCP-сокетов в Java
Давайте посмотрим, как мы можем реализовать коммуникацию сокетов в Java. Мы сейчас напишем две Java-программы. Одной будет программа, запущенная на сервере, а другой — клиентская программа, которая будет взаимодействовать с сервером.
Реализация серверного сокета
Теперь давайте создадим клиент для взаимодействия с серверным сокетом, созданным выше.
Реализация клиентского сокета
Показанная выше программа действует как клиент, создавая соединение с серверным сокетом. После подключения клиент получает отправленные сервером данные. Входной поток соединяется с буфером, используя BufferedReader для хранения полученных данных, так как мы не можем быть уверены, что данные будут использоваться сразу же после получения. Затем мы считываем данные из буфера и выводим их в консоль.
Запуск программ
Сначала запустите серверную Java-программу, а затем клиентскую Java-программу (потому что сервер уже должен работать для подключения клиента). Вы увидите Received data: Java Revisited в терминале, где работает клиентская программа. Вот что здесь произошло: серверная программа отправила данные клиенту по запросу, а клиентская программа вывела их на терминал.
В этой статье мы обсудили, что такое сокеты и Java-реализация связи TCP-сокетов.
Основы программирования TCP-сокетов на Java
Клиент-серверная архитектура — наиболее распространенная структура приложений в Интернете. В этой архитектуре клиенты (т.е. персональные компьютеры, устройства Интернета вещей и т. д.) сначала запрашивают ресурсы с сервера. Затем сервер отправляет обратно соответствующие ответы на запросы клиентов. Чтобы это произошло, должен быть какой-то механизм, реализованный как на стороне клиента, так и на стороне сервера, который поддерживает эту сетевую транзакцию. Этот механизм называется коммуникацией посредством сокетов.
Почти каждое приложение, которое полагается на сетевые операции, такие как извлечение данных с удаленных серверов и загрузка файлов на сервер, широко использует сокеты “под капотом”. Несколько примеров таких приложений — браузеры, чат-приложения и одноранговые сетевые приложения.
В этой статье мы более подробно рассмотрим сокеты и простую клиент-серверную реализацию с использованием сокетов в Java.
Примечание: существует два типа сокетов: TCP и UDP. Поскольку большинство сетевых приложений используют TCP, здесь я буду говорить только о TCP-сокетах и их реализации.
Что такое сокет?
Сокет — это программная (логическая) конечная точка, устанавливающая двунаправленную коммуникацию между сервером и одной или несколькими клиентскими программами. Сокет — это нечто “программное”. Другими словами, сокет не существует на физическом уровне. Прикладное программное обеспечение определяет сокет так, чтобы он использовал порты на основном компьютере для его реализации. Это позволяет программистам комфортно работать с низкоуровневыми деталями сетевых коммуникаций, такими как порты, маршрутизация и т. д., внутри прикладного кода.
Как работают сокеты?
TCP-сокет устанавливает связь между клиентом и сервером в несколько этапов.
На каждой из перечисленных выше стадий коммуникации сокетов “под капотом» происходит много всего сложного. Однако этих знаний вполне достаточно для понимания и демонстрации того, как работает коммуникация посредством TCP-сокетов.
К настоящему времени мы уже достаточно знаем о TCP-сокетах. Давайте теперь посмотрим на них в действии.
Реализация коммуникации посредством TCP-сокетов в Java
Давайте посмотрим, как мы можем реализовать коммуникацию сокетов в Java. Мы сейчас напишем две Java-программы. Одной будет программа, запущенная на сервере, а другой — клиентская программа, которая будет взаимодействовать с сервером.
Реализация серверного сокета
Теперь давайте создадим клиент для взаимодействия с серверным сокетом, созданным выше.
Реализация клиентского сокета
Показанная выше программа действует как клиент, создавая соединение с серверным сокетом. После подключения клиент получает отправленные сервером данные. Входной поток соединяется с буфером, используя BufferedReader для хранения полученных данных, так как мы не можем быть уверены, что данные будут использоваться сразу же после получения. Затем мы считываем данные из буфера и выводим их в консоль.
Запуск программ
Сначала запустите серверную Java-программу, а затем клиентскую Java-программу (потому что сервер уже должен работать для подключения клиента). Вы увидите Received data: Java Revisited в терминале, где работает клиентская программа. Вот что здесь произошло: серверная программа отправила данные клиенту по запросу, а клиентская программа вывела их на терминал.
В этой статье мы обсудили, что такое сокеты и Java-реализация связи TCP-сокетов.
Сокеты в Python для начинающих
Предисловие
В далеком для меня 2010 году я писал статью для начинающих про сокеты в Python. Сейчас этот блог канул в небытие, но статья мне показалась довольно полезной. Статью нашел на флешке в либровском документе, так что это не кросспост, не копипаст — в интернете ее нигде нет.
Что это
Для начала нужно разобраться что такое вообще сокеты и зачем они нам нужны. Как говорит вики, сокет — это программный интерфейс для обеспечения информационного обмена между процессами. Но гораздо важнее не зазубрить определение, а понять суть. Поэтому я тут постараюсь рассказать все как можно подробнее и проще.
Существуют клиентские и серверные сокеты. Вполне легко догадаться что к чему. Серверный сокет прослушивает определенный порт, а клиентский подключается к серверу. После того, как было установлено соединение начинается обмен данными.
Рассмотрим это на простом примере. Представим себе большой зал с множеством небольших окошек, за которыми стоят девушки. Есть и пустые окна, за которыми никого нет. Те самые окна — это порты. Там, где стоит девушка — это открытый порт, за которым стоит какое-то приложение, которое его прослушивает. То есть, если, вы подойдете к окошку с номером 9090, то вас поприветствуют и спросят, чем могут помочь. Так же и с сокетами. Создается приложение, которое прослушивает свой порт. Когда клиент устанавливает соединение с сервером на этом порту именно данное приложение будет ответственно за работу этим клиентом. Вы же не подойдете к одному окошку, а кричать вам будут из соседнего 
После успешной установки соединения сервер и клиент начинают обмениваться информацией. Например, сервер посылает приветствие и предложение ввести какую-либо команду. Клиент в свою очередь вводит команду, сервер ее анализирует, выполняет необходимые операции и отдает клиенту результат.
Сервер
Сейчас создайте два файла — один для сервера, а другой для клиента.
В Python для работы с сокетами используется модуль socket:
Прежде всего нам необходимо создать сокет:
Здесь ничего особенного нет и данная часть является общей и для клиентских и для серверных сокетов. Дальше мы будем писать код для сервера. Это вполне логично — зачем нам писать клиентское приложение, если некуда подключаться 
Теперь нам нужно определиться с хостом и портом для нашего сервера. Насчет хоста — мы оставим строку пустой, чтобы наш сервер был доступен для всех интерфейсов. А порт возьмем любой от нуля до 65535. Следует отметить, что в большинстве операционных систем прослушивание портов с номерами 0 — 1023 требует особых привилегий. Я выбрал порт 9090. Теперь свяжем наш сокет с данными хостом и портом с помощью метода bind, которому передается кортеж, первый элемент (или нулевой, если считать от нуля) которого — хост, а второй — порт:
Теперь у нас все готово, чтобы принимать соединения. С помощью метода listen мы запустим для данного сокета режим прослушивания. Метод принимает один аргумент — максимальное количество подключений в очереди. Напряжем нашу бурную фантазию и вспомним про зал с окошками. Так вот этот параметр определяет размер очереди. Если он установлен в единицу, а кто-то, явно лишний, пытается еще подстроится сзади, то его пошлют 
Ну вот, наконец-то, мы можем принять подключение с помощью метода accept, который возвращает кортеж с двумя элементами: новый сокет и адрес клиента. Именно этот сокет и будет использоваться для приема и посылке клиенту данных.
Вот и все. Теперь мы установили с клиентом связь и можем с ним «общаться». Т.к. мы не можем точно знать, что и в каких объемах клиент нам пошлет, то мы будем получать данные от него небольшими порциями. Чтобы получить данные нужно воспользоваться методом recv, который в качестве аргумента принимает количество байт для чтения. Мы будем читать порциями по 1024 байт (или 1 кб):
Как мы и говорили для общения с клиентом мы используем сокет, который получили в результате выполнения метода accept. Мы в бесконечном цикле принимаем 1024 байт данных с помощью метода recv. Если данных больше нет, то этот метод ничего не возвращает. Таким образом мы можем получать от клиента любое количество данных.
Дальше в нашем примере для наглядности мы что-то сделаем с полученными данными и отправим их обратно клиенту. Например, с помощью метода upper у строк вернем клиенту строку в верхнем регистре.
Теперь можно и закрыть соединение:
Собственно сервер готов. Он принимает соединение, принимает от клиента данные, возвращает их в виде строки в верхнем регистре и закрывает соединение. Все просто 
Клиент
Думаю, что теперь будет легче. Да и само клиентское приложение проще — нам нужно создать сокет, подключиться к серверу послать ему данные, принять данные и закрыть соединение. Все это делается так:
Думаю, что все понятно, т.к. все уже разбиралось ранее. Единственное новое здесь — это метод connect, с помощью которого мы подключаемся к серверу. Дальше мы читаем 1024 байт данных и закрываем сокет.
Сокеты
Сокеты объединили в едином интерфейсе потоковую передачу данных подобную каналам pipe и FIFO и передачу сообщений, подобную очередям сообщений в System V IPC. Кроме того, сокеты добавили возможность создания клиент-серверного взаимодействия (один со многими).
Классификация сокетов
Поток байтов без разделения на записи, подобный чтению-записи в файл или каналам в Unix. Процесс, читающий из сокета, не знает, какими порциями производилась запись в сокет пишущим процессом. Данные никогда не теряются и не перемешиваются.
Передача записей ограниченной длины. Записи на уровне интерфейса сокетов никак не связанны между собой. Отправка записей описывается фразой: «отправил и забыл». Принимающий процесс получает записи по отдельности в непредсказуемом порядке или не получает вовсе.
Надёжная упорядоченная передача с делением на записи. Использовался в Sequence Packet Protocol для Xerox Network Systems. Не реализован в TCP/IP, но может быть имитирован в TCP через Urgent Pointer.
Имена сокетов
Имена сокетов на сервере назначаются вызовом bind(), а на клиенте, как правило, генерируются ядром.
TCP/IP
Для передачи данных с помощью семействе протоколов TCP/IP реализованы два вида сокетов Stream и Datagram. Все остальные манипуляции с сетью TCP/IP осуществляются через Raw-сокеты.
API Сокетов
Создание сокета
protocol Поскольку в семействе протоколов TCP/IP протокол однозначно связан с типом сокета, а в домене Unix понятие протокола вообще отсутствует, то этот параметр всегда равен нулю, что соответствует автовыбору.
В домене Unix возможно создание пары соединённых между собой безымянных сокетов, которые буду вести себя подобно неименованному каналу pipe. В отличие от неименованных каналов, оба сокета открыты и на чтение и на запись.
Назначение имени
Для того, чтобы клиенты могли подключаться к серверу, сервер должен иметь заранее известное имя. Вызов bind() обеспечивает назначение имени серверному сокету. Сервер получит имя клиентского сокета в момент соединения (stream) или получения сообщения (datagram), поэтому на клиентской стороне имя сокету, как правило, назначается ядром ОС, хотя и явное присвоение с помощью bind() остаётся доступным.
Соединение с сервером (в основном Stream)
Для сокета типа Stream вызов connect() соединяет сокет клиента с сокетом сервера, создавая поток передачи данных. Адрес сервера servaddr заполняется по тем же правилам, что и адрес, передаваемый в bind().
Для сокета типа Datagram вызов connect() запоминает адрес получателя, для отправки сообщений вызовом send(). Можно пропустить этот вызов и отправлять сообщения вызовом sendto(), явно указывая адрес получателя для каждого сообщения.
Прослушивание сокетов сервером (только Stream)
Вызов listen() на стороне сервера превращает сокет в фабрику сокетов, которая будет с помощью вызова accept() возвращать новый транспортный сокет на каждый вызов connect() со стороны клиентов.
Обработка запроса клиента.
Клиентский connect() будет заблокирован до тех пор, пока сервер не вызовет accept(). accept() возвращает транспортный сокет, который связан с сокетом для которого клиент вызвал connect(). Этот сокет используется как файловый дескриптор для вызовов read(), write(), send() и recv().
В переменную clntaddr заносится адрес подключившегося клиента.
Чтение/запись данных
Для операций чтения-записи данных через сокеты могут применяться стандартные вызовы read() и write(), однако существуют и более специализированные вызовы:
Все вызовы применимы и к потоковым сокетам и к сокетам датаграмм. При попытке прочитать датаграмму в слишком маленький буфер, её хвост будет утерян.
write(fd,buf,size) == send(fd,buf,size,0) == sendto(fd,buf,size,0,NULL,0)
send() может применяться только к тем сокетам, для которых выполнен connect().
sendmsg() и recvmsg() близки к вызовам writev() и readv(), поскольку позволяют одним вызовом отправить/принять несколько буферов данных.
Управление окончанием соединения (в основном Stream)
Вызов close() закрывает сокет и освобождает все связанные с ним структуры данных.
Для контроля над закрытием потоковых сокетов используется вызов shutdown(), который позволяет управлять окончанием соединения.
int shutdown () (int sock, int cntl);
Аргумент cntl может принимать следующие значения:
Для реализации клиент-серверной архитектуры на основе сокетов необходимо предоставить разработчику сервера инструмент для параллельной работы с несколькими клиентами. Возможные варианты:
Последний вариант является наиболее часто используемым в Unix и реализуется вызовами select() и poll().
Вызовы отличаются по формату параметров, но эквивалентны по своему назначению. Они приостанавливают выполнение процесса, до появления данных от клиента, появления возможности отправить данные клиенту, появления ошибки приёма-передачи или до истечения таймаута. Если точнее, то для операций чтения-записи проверяется, что они не будут заблокированы.
Реализация этих вызовов позволяет использовать их для отслеживания состояния любых файловых дескрипторов, а не только сокетов.
SELECT
Вызов select() получает три битовых набора флагов (чтение, запись, ошибка) размером с максимальное доступное число открытых файловых дескрипторов. Флаг в какой-то позиции означает что мы наблюдаем за соответствующим файловым дескриптором.
Параметр nfds задает номер максимального выставленного флага и служит для оптимизации.
Для манипуляции флагами используется следующие функции, которые позволяют очистить набор флагов, установить флаг, сбросить флаг, проверить состояние флага:
При изменении состояния каких-либо интересующего нас файловых дескрипторов select() сбрасывает все флаги и выставляет те, которые обозначают, какие события и на каких файловых дескрипторах произошли. Возвращается значение, указывающее сколько флагов возвращено. Если событий не было и возврат из select() произошёл по таймауту, все наборы флагов обнуляются и возвращается ноль.
Таймаут задаётся структурой timeval, содержащей секунды и микросекунды
Поскольку вызов sleep() работает с точностью до секунды, то для приостановки процесса на более короткие промежутки времени часто используют select() с указателями NULL вместо указателей на флаги.
Вызов poll() функционально эквивалентен select. Его параметры как бы «вывернуты наизнанку» по сравнению с select(). Вместо трёх наборов битовых файлов в poll() массив интересующих файловых дескрипторов размером nfds. С каждым файловым дескриптором связаны две переменные: флаги интересующих событий и флаги случившихся событий. Время таймаута задаётся в миллисекундах.
struct pollfd < int fd; /* file descriptor / short events; / requested events / short revents; / returned events */ >;
Битовые флаги в events определяются макросами:
Диаграмма взаимодействия сокетов datagram
Ниже представлена временная диаграмма соединения клиента и сервера через сокет типа Datagram
| Сервер | Клиент |
|---|---|
| Создание сокета socket() | Создание сокета socket() |
| Присвоение имени bind() | |
| Начало цикла работы с клиентами | |
| Прием сообщения с адресом отправителя recvfrom() | Приём сообщения recv() |
| Закрытие сокета close() | |
| Конец цикла работы с клиентами | |
| Закрытие сокета close() |
Диаграмма взаимодействия сокетов stream
Ниже представлена временная диаграмма соединения клиента и сервера через сокет типа Stream





